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Résumé

Puisque les ordinateurs sont omniprésents dans notre société et que, de plus en
plus, nous dépendons de programmes pour accomplir nos activités de tous les jours,
les bogues peuvent parfois avoir des conséquences cruciales. Une grande proportion des
programmes existants sont écrits en C ou en C++ et la plupart des erreurs avec ces
langages sont dues à l’absence de sûreté d’accès à la mémoire. Notre objectif à long
terme est d’être en mesure de vérifier si un programme C ou C++ accède correctement
à la mémoire malgré les défauts de ces langages.

À cette fin, nous avons créé un cadre de développement d’analyses statiques que
nous présentons dans ce mémoire. Il permet de construire des analyses à partir de pe-
tits composants réutilisables qui sont liés automatiquement par métaprogrammation. Il
incorpore également le modèle de conception (design pattern) du visiteur et des algo-
rithmes utiles pour faire de l’analyse statique. De plus, il fournit un modèle objet pour
le RTL, la représentation intermédiaire de bas niveau pour tous les langages supportés
par GCC. Ceci implique qu’il est possible de concevoir des analyses indépendantes des
langages de programmation.

Nous décrivons également les modules que comporte l’analyse statique que nous
avons développée à l’aide de notre cadre d’analyse et qui vise à vérifier si un programme
respecte les règles d’accès à la mémoire. Cette analyse n’est pas complète, mais elle
est conçue pour être améliorée facilement. Autant le cadre d’analyse que les modules
d’analyse des accès à la mémoire sont distribués dans RTL-Check, un logiciel libre.



Abstract

Since computers are ubiquitous in our society and we depend more and more on pro-
grams to accomplish our everyday activities, bugs can sometimes have serious conse-
quences. A large proportion of existing programs are written in C or C++ and the
main source of errors with these programming languages is the absence of memory
safety. Our long term goal is to be able to verify if a C or C++ program accesses
memory correctly in spite of the deficiencies of these languages.

To that end, we have created a static analysis framework which we present in this
thesis. It allows building analyses from small reusable components that are automat-
ically bound together by metaprogramming. It also incorporates the visitor design
pattern and algorithms that are useful for the development of static analyses. More-
over, it provides an object model for RTL, the low-level intermediate representation for
all languages supported by GCC. This implies that it is possible to design analyses that
are independent of programming languages.

We also describe the modules that comprise the static analysis we have developed
using our framework and which aims to verify if a program is memory-safe. This analysis
is not yet complete, but it is designed to be easily improved. Both our framework and
our memory access analysis modules are distributed in RTL-Check, an open-source
project.
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Chapter 1

Introduction

Programs are not always apparent, but they are everywhere in our lives. We use
them for entertainment; they are obviously an essential component of video games,
but they are also very important for the creation and distribution of movies, music
and books. Our economy depends on them; whether it is to automate manufacturing
or to support the digital communications employed by businesses around the globe,
they are unavoidable. We even rely on them in life-critical situations, e.g. in public air
transportation, for emergency services and for medical treatments.

More often than we would like, programs have bugs. Their consequences vary greatly
depending on the context in which they appear. When playing a video game, a bug
can be frustrating. In a factory, a bug can cost millions of dollars in lost productivity.
In a 911 call center, a bug can cost lives.

Moreover, in hostile environments such as the Internet, there are often malevolent
people who are actively looking for bugs and ways to exploit them. New attacks and
viruses are reported almost every day by web sites that specialize in tracking these
threats.

In this context, more and more often we want assurance that the programs we use
work as expected, i.e., they have no bug. However, it is difficult to prove that a program
is correct, even under the best conditions. This task is further complicated by the fact
that many languages do not even offer basic guarantees such as memory safety about
the run-time behavior of their programs.

Static program analysis is an approach that can be used to obtain these guarantees
and to prove that a program is correct with respect to its specification. This thesis
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is about static analysis of programs written in programming languages that are not
memory-safe.

1.1 Memory Safety in C and C++

C and C++ are indisputably the two most popular programming languages that are not
memory-safe. When a programmer uses them, he has complete control over memory.
This is an important feature for writing the kernel of an operating system and device
drivers, but for a normal application it causes more problems than it solves.

The problem is that when a program has a bug related to memory access, the bug
often causes it to blindly overwrite some of its data instead of signaling the error and
aborting. Depending on the nature of what is overwritten, the program may continue
with corrupted data or crash before it completes.

Most often, invalid memory accesses are caused by a wrong assumption about some
data. For example, a buffer overflow occurs when an array is smaller than the size the
program assumes it has. The wrong assumption can also be that a pointer is initialized,
that it is not null or that it points to data of a given type.

Sometimes, an invalid memory access can be traced to an error on the part of a
programmer who confuses what some code actually does with what he expects it to do.
This may be caused by ignorance, negligence, bad design or bad documentation of the
interface of a function. For example, if a programmer expects strncpy() (from the C
library) to always create a null-terminated string, it might induce an invalid memory
access. Another common error is to pass a user-controlled string as the first argument
to printf() instead of a proper format string. This is a format string vulnerability
which can have disastrous consequences [Lac03].

In memory-safe languages such as Java and C#, these problems cannot happen.
Such languages guarantee that they will catch every memory access error during the
execution of a program. This ensures that the program will be stopped instead of
continuing with corrupted data.

In C and C++, a memory access error can cause a program to generate a wrong
result. Worse, it can often be exploited by malevolent people to gain unauthorized
access to a computer or data [LD05].
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To avoid these problems, one obvious solution is to avoid using unsafe languages
such as C and C++. This is often a good idea, but it is not always possible for some
low-level applications. Also, there is an immensely large collection of existing C and
C++ programs which are useful and cannot be rewritten in another language overnight.
For example, Debian 3.1, an open-source operating system, contains 170 millions lines
of C and C++ source code [AIGBRMHT05].

Since C and C++ will continue to be in wide use for the foreseeable future, we
are looking for means to mitigate the problems associated with the absence of memory
safety in these languages.

1.2 Goals of the Project

Our main goal is to develop a tool that helps determining statically, i.e., without exe-
cuting it, whether a C or C++ program is memory-safe or not. Because this problem is
undecidable, it is not possible to write a tool that computes the right answer in all sit-
uations. However, it is possible to create a tool that gives a safe diagnostic in the sense
that it will report at least one error for all programs that access memory incorrectly.
We want to produce such a tool.

Nevertheless, we are attacking a difficult problem. There is an enormous amount of
work ahead of us before we will be able to produce good diagnostics about the memory
safety of C and C++ programs automatically. Since the problem is far too broad to be
solved during a master’s program, one of our objectives is to produce a tool that will
continue to be useful and easy to improve after this period.

We specifically exclude from our project the usage of run-time checking to detect
memory access errors. However, it is not unlikely that our tool or an extension of it
could ultimately generate a diagnostic precise enough to allow automatic insertion of
dynamic verifications into an unsafe program to render it memory-safe.
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1.3 Contributions

Our main contributions can be found in RTL-Check1, an open-source tool we created
to analyze programs statically. This tool includes:

• An object model to represent RTL, the low-level intermediate representation for
all languages supported by GCC, the GNU Compiler Collection;

• A static analysis framework that employs metaprogramming to facilitate the cre-
ation of possibly complex analyses (for C, C++ and other languages supported
by GCC) from small reusable components;

• A promising and extensible analysis which aims to demonstrate memory safety of
C programs using our framework;

• A generic method to automatically implement the visitor design pattern in Python
programs.

1.4 Overview of the Thesis

Chapter 2 studies the techniques that can be used to detect memory access errors in
low-level languages such as C and C++. Chapter 3 discusses the important choices
that we made at the start of the project and that affected the development of our tool.
Chapter 4 describes our first proof of concept which allowed us to validate some of our
design decisions.

The following two chapters constitute the bulk of our contribution. Chapter 5
examines our static analysis framework. This framework makes it possible to build
analyses from small reusable components. Chapter 6 details the inner workings of our
memory safety analysis, which we created using our framework.

Chapter 7 shows that metaprogramming is a powerful programming technique to
solve complex problems and how RTL-Check takes advantage of it. Among other things,
this chapter depicts an automated way to implement an improved visitor design pattern.
Chapter 8 explains the open source development process that we tried to apply to RTL-
Check and the results that ensued from it. Finally, Chapter 9 presents our conclusion.

1The RTL-Check home page is at http://rtlcheck.sourceforge.net/.

http://rtlcheck.sourceforge.net/


Chapter 2

State of the Art

This chapter presents an overview of the techniques that can be used to protect pro-
grams against buffer overflows and memory access errors1 in low-level languages such
as C or C++. A very large number of different approaches have been proposed over
the years. Some of them detect the errors themselves, but many only try to prevent
their exploitation.

Sections 2.1, 2.2 and 2.3 present the main idea of the approaches based on static
analysis, dynamic checks and miscellaneous other techniques respectively. We will ex-
plain in more details those that are nearest to the goal of our project, i.e., using static
analysis to detect all memory access errors. For more in-depth information about the
techniques presented in these sections, see this survey [LD05].

Section 2.4 presents some tools that can help implementing new static analyses.

2.1 Static Analysis

In this section, we describe the main ideas that can be used to protect code against
buffer overflows without running it. First, we present general approaches to static
analysis that are independent of the property analyzed.

Then, we explain more specific techniques to detect memory access errors. The
1“Memory access error” is a more general phrase than “buffer overflow”. We use the latter a lot in

this chapter because many approaches presented here target buffer overflows specifically.
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different analyses are not all equivalent. Some of them guarantee that all errors are
found, others do not. Some are completely autonomous; others take advantage of hints
from the programmer. They also vary greatly by their speed and their rate of false
diagnostics.

We distinguish between two kinds of false diagnostics. A false positive is when an
analysis reports an error that cannot happen, and a false negative is when an analysis
does not report a possible error. Since our problem is undecidable, every static analysis
that always terminates gives a false diagnostic for a certain class of programs. We prefer
analyses that never result in false negatives because our goal is to prove that a program
is free of memory access errors.

Sections 2.1.2, 2.1.3 and 2.1.5 are based on a report [Lac03] written during the
author’s undergraduate studies.

2.1.1 General Approaches to Static Analysis

There are a few general approaches to static analysis that are independent of the prop-
erties to be analyzed. The following paragraphs present them briefly.

Monotone Data Flow Analysis Frameworks

Kildall, Kam and Ullman [Kil73, KU76, KU77], have established the basis of monotone
data flow analysis frameworks. With this approach, which we describe in more details
in Section 5.2.1, information about the program is kept for each program point during
the analysis. This information is an element of a semilattice. Monotone functions on
the semilattice describe how an instruction transforms the information from a given
program point to the next. An iterative algorithm propagates the information along
the control flow graph of the program and the analysis ends when no new information
is propagated. The semilattice must satisfy some conditions to ensure that the analysis
terminates.

Set-Constraint Based Analysis

In contrast, set-constraint based analysis [HJ91b, HJ94, Aik94] does not follow directly
the control flow of the program to propagate information. Instead, only one pass over
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the program is used to extract set constraints. This gives rise to a system of inequations
in which each constraint variable corresponds to the set of values a given program
variable can take at a given program point. Constraints are created in such a way that
any solution to the system of inequation is a safe approximation of the program. The
smallest solution is the best approximation. The main limitation of set-constraint based
analysis is that it ignores all inter-variable dependencies.

Constraint-Based Type Inference

A related approach is that of constraint-based type inference [AW93, Pot00, SP05]. The
goal is to assign a type to variables and other syntactic constructions of programs. A
type system expresses the relations between syntactic constructions and types. Type
systems can be very simple and inspired from the underlying type system of the lan-
guage, but they can also include more advanced concepts such as subtyping, poly-
morphic types, conditional constraints, indexed types, inductive types, and guarded
algebraic data types. These concepts add expressivity to type systems, which in turn
allow expressing more complex properties.

Abstract Interpretation

Cousot and Cousot developed abstract interpretation [CC77, CC79, CC92], a general
framework for program analysis in which analyses are formally specified as an abstrac-
tion of the concrete semantics of a language. In its most common form, it is more general
than monotone data flow analysis frameworks because, although it also use semilattices
to represent information about a program, the conditions on the semilattices are relaxed
a bit; the use of widening operators can compensate. Set-constraint based analyses and
type inference algorithms can also be recast in an abstract interpretation framework, as
shown in [CC95, Cou97]. One interesting aspect of abstract interpretation is allowing
the creation of new analyses from existing ones.

2.1.2 Lexical Analysis

Lexical analysis is not a very powerful static analysis technique. Analyzers using this
approach are looking for a sequence of tokens that often pose problems in the source
code. For example, a tool can check whether there is a call to strcpy() and flag it
unconditionally as a potential buffer overflow even if it can be used safely.
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Tools [VBKM00, Fla] using lexical analysis have the advantage of being fast because
the analysis does not require many calculations. They usually give many false positives,
that is to say, they give indications that an overflow is possible when it is not. Also,
they never ensure that no overflow is possible.

2.1.3 Annotation-Assisted Lightweight Static Checking

Evans and Larochelle [EL02, LE01] explain a method allowing, among other things, the
detection of buffer overflows in C programs with some kind of lightweight static checking.
Their method avoids interprocedural analysis with the use of annotations, also called
semantic comments, added by the programmer to the prototype of the functions. These
annotations (preconditions and postconditions) form a kind of contract for the behavior
of a function. It is possible to check if the contract is respected by any party (the
implementation and the callers) independently of others. Thus, with this approach,
a whole program can be analyzed without resorting to more costly interprocedural
analysis.

To check if a function can cause an overflow, it is assumed the values received as
input respect the preconditions expressed in the annotations. Under these conditions,
the analysis tries to verify whether the code ensures that the postconditions are met at
the end of the function. If it does not, the programmer is informed.

When the analysis encounters a function call, it checks whether the parameters
passed respect the preconditions of the called function and it assumes that, after this
point, the postconditions are met. If a precondition is not satisfied for a function call,
the programmer is warned.

Splint is a tool using this approach. The analysis it implements has the advantage of
being very fast. However, it can cause both false positives and false negatives. Splint is
free software, but it would be difficult to modify it so that there are never false positives.
The main idea that we will keep from Splint is that we can avoid costly interprocedural
analysis by defining contracts between a function and its callers.

2.1.4 Taint Analysis

Alexander Ivanov Sotirov [Sot05] uses taint analysis to reduce the number of false
positives that would be reported if the bounds of arrays were checked using a simple
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value range propagation algorithm. A variable is considered tainted if its value can
be controlled by the user of the program. Annotations are used to specify whether a
function returns tainted values.

This analysis reports errors only when a function that manipulates an array is called
with a size argument that is tainted. The idea is that if the user can force the program to
use an arbitrary value as the size of an array, he can cause an overflow. This analysis has
been implemented in GCC and it can generate both false positives and false negatives.
This is incompatible with our goal of detecting all array access errors.

2.1.5 Abstraction of Data

Wagner et al. [Wag00, WFBA00] consider null-terminated strings as an abstract data
type manipulated by the functions of the C library. Every string is modeled by a pair
of integers indicating its allocated size and its real length, i.e., the position of the null
character that terminates the string. For each manipulation of a string, one or more
constraints are associated to these two integers. Manipulations of integers also generate
constraints.

After all the constraints have been extracted from a program, they form a constraint
system that must be solved. The result is, for each string, a range of possible values
for the memory allocated and another one for the size of the string. To be sure there
is no overflow, the upper bound of the range for the size must be smaller than or equal
to the lower bound of the range for allocated memory.

BOON is a tool that implements this technique. The analysis done to generate
constraints has the advantage of being fast, but it lacks precision. For example, it
does not take the control flow into account, i.e., control structures and the order of
instructions are ignored. Also, this tool considers there is only one instance of each
variable composing a structure instead of one for each instance of the structure. This
can greatly enlarge the range of possible values seen by BOON as opposed to the real
values it can take. Because of this, the number of false positives is rather high.

A more important problem with BOON is that it does not detect all overflows.
First, it only detects overflows on strings, not on arbitrary arrays. Moreover, only
manipulations of strings by the functions of the C library are considered and not those
modifying a string as a character array or using pointer dereferences. The handling of
pointers also poses problems because it is much simplified. For instance, BOON largely
ignores the fact that two pointers can be aliases to the same string at the same time.
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It also totally ignores doubly indirected pointers, arrays of pointers, function pointers
and union.

All these deficiencies prevent the detection of some buffer overflows. They are not
intrinsic to the approach but, since only some parts of BOON are free software, it is
not an ideal starting point to build a better analysis.

The important thing to remember from BOON is the modeling of strings by pairs
of integers. Such an abstraction of strings is easy to deal with. It would be much more
difficult to implement a logic that can express the position of the first null character in
a given array using more primitive constructs. Other abstractions could be created to
deal with other kinds of data.

2.1.6 Context-Sensitive Analysis

Ganapathy et al. discuss [GJC+03] their improvements to the analysis described in
the previous section. From our point of view, the most interesting improvement is
that they do context-sensitive analysis, i.e., they take the context of the caller into
account when analyzing a function. Context-sensitive analysis is important to reduce
the number of false positives because many programs cannot be proved correct using
only context-insensitive analysis.

They use two different techniques to achieve context-sensitive analysis. The first
one is inlining constraints at call sites, but this cannot work with recursive function
calls and a function must be analyzed for each call site independently. The second one
is generating summary constraints for functions, i.e., a set of constraints that can be
instantiated at every call site with elements taken from the call context. Both of these
approaches have their advantages and their disadvantages.

2.1.7 Approximating Contracts with Integer Analysis

Dor et al. [DRS03] present an approach that can detect all string manipulation errors
in C programs, i.e., without false negatives. They show how to reduce the problem of
checking string manipulations to that of determining whether assertions can be violated
in a program that manipulates only integers. This analysis is not interprocedural; it
works on one procedure at a time. It can use annotations if they are available, but
the authors also show how it is possible to compute an approximation of the strongest
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postcondition and the weakest liberal precondition from the program that manipulates
integers. Thus, the contract of many procedures can be approximated automatically.

The tool that implements this analysis is called CSSV, but it is not publicly available.
The results presented show that, in some cases, the time and memory required for the
analysis and the number of false positives can be relatively high. However, it is difficult
to tell how representative these results are, because they are based the analysis of on
less than 1000 lines of code.

In any case, this analysis is very interesting both because it can generate a contract
automatically and because it detects all string manipulation errors. However, it does
not detect buffer overflows on data other than strings.

2.1.8 Statistical Belief Analysis

The tool presented by Xie et al. [XCE03], ARCHER, allows checking millions of lines
of existing code because it is fast and it is tuned to suppress common sets of false
positives. On the other hand, it makes absolutely no guarantee about false negatives,
so the analysis itself is not that interesting to us. Also, the tool is not publicly available.

However, there are some elements of the analysis that are interesting. Contrary to
the approach described in Section 2.1.7, where the implementation of a procedure is
used to infer its contract, this one uses the context in which a procedure is called. This
method is known as statistical belief analysis [ECH+01]. For procedures that receive a
pointer to an array, it tries to compute the probability that each of its other parameters
represents the size of the array. For this, it counts, among all call sites, how many times
a given parameter is less than or equal to the size of the array (successes) and how many
times it is more than the size of the array (failures). With the rate of successes and
failures, it is possible to compute the probability that a given parameter represents the
size of the array, and a contract for the procedure can be derived from that.

Statistical belief analysis could be one of many possible methods used to guess
the contract of procedures in an analysis that never generates false negatives. The
contract would still have to be verified at every call site and in the implementation of
the procedure.
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2.1.9 Abstract Program Representation

Livshits and Lam [LL03] present an abstract representation, IPSAA, an analysis that
helps transforming a C program into this representation and a tool that tries to detect
buffer overflows from this representation. IPSSA (InterProcedural Static Single As-
signment) captures intraprocedural and interprocedural definition-use chains for both
directly and indirectly accessed memory locations.

The main part of the analysis is a hybrid pointer alias analysis. The first component
of this analysis is precise and it is path and context sensitive. It is used to track locations
accessed from parameters and local variables by simple paths, that is to say, without
iterated dereference or field access. The second component is more efficient but less
precise because it is flow and context insensitive. It is used to track all other locations.

However, this analysis uses an unsound assumption, which is that pointers passed
into a procedure and locations that can be accessed by applying simple paths to these
pointers are all distinct from each other. Since this assumption is not verified, there
can be false negatives. Still, this approach might be another way to guess the contract
of a procedure.

2.1.10 Domain-Specific Abstract Interpretation

ASTRÉE [CCF+05, Mau04] is a tool specifically targeted at the verification of embed-
ded real-time software written in C. It cannot verify all C programs, e.g., it supports
neither dynamic memory allocation nor the use of the C library. Since embedded real-
time software usually does not use these features, these limitations are often acceptable.
These restrictions make it possible to verify many programs completely automatically,
i.e., without annotation or help from the programmer. There are no false negatives.

ASTRÉE is not publicly available. It uses abstract interpretation and it imple-
ments many abstract domains; many of them where developed specifically to abstract
some constructs that are often present in embedded real-time software. When running
ASTRÉE on a given program, it is possible to specify which abstract domain to use for
the analysis. If there are too many, the analysis might run for too long, and if one is
missing, it might not be possible to verify that the program is correct.

The main thing to remember about this approach is that when we are dealing with
a restricted class of programs, it is often possible to create abstractions that are precise
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enough to verify many programs, yet not too precise to the point of making the analysis
too slow.

2.1.11 Predicate Abstraction and Abstraction Refinement

People at Microsoft Research developed SLAM [Bal04, BCDR04], a tool that imple-
ments a very interesting static analysis. The goal of this tool is to verify that drivers
for the Windows operating system contain no error. It is currently available only as
binary software in a beta version of Windows Driver Foundation, but BOOP [Wei03] is
a publicly available open-source reimplementation of this tool.

The idea is to create a Boolean program, i.e., a program that manipulates only
Boolean variables, from the C program to be analyzed and a set of predicates. This is
predicate abstraction. The resulting Boolean program is an easier to analyze abstraction
of the original C program. If a property holds on the abstraction, it means that it also
holds on the original program.

However, if a property does not hold on the abstraction, it does not mean anything
about the original C program. In this case, the analysis produces an execution trace
in which the property does not hold on the abstraction. A theorem prover then checks
whether the property holds on the original program for this specific trace. If it does
not, an error is reported. If it does, the theorem prover identifies a new predicate to
discriminate between executions where the property holds and those where it does not.

The new predicate is then added to the set of predicates used to build the abstraction
of the original program, and the process starts over. This process is called abstraction
refinement. An important problem with this process is that it does not ensure that
the analysis terminates. Nevertheless, this approach can certainly give good results for
many programs and we will keep it in mind.

2.2 Dynamic Checks

This section presents an overview of the different approaches that can be used to detect
buffer overflows or their exploitation at run time. Some of them guarantee that they
will work in all situations and some do not, either because they target some kind of
overflow in particular or because they target some kind of exploitation techniques.
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All the techniques presented here introduce an overhead at run time that varies from
negligible to a slow-down factor of two or more.

2.2.1 Run Time Bounds Checking

Bounds checking, i.e., verifying whether an index is inside the bounds of an array before
using it, is the most obvious form of dynamic check. The problem is that the C and
C++ languages allow the use of pointers in contexts completely disconnected from the
declarations (or allocations) to which they refer. It renders run-time bounds checking
difficult for a compiler, but not impossible. There are many ways to achieve it and they
are not all equivalent.

One way to implement array bounds checking is to change the representation of
pointers so that they include information about the memory area they refer to. Such
modified pointers are sometimes called bounded pointers. They allow the most precise
detection of overflows and pointer error, i.e., with neither false positive nor false nega-
tive. This approach is presented in [ABS94, XDS04]. Since bounded pointers are larger,
they are not compatible with some programs that assume that pointers have the same
size as integers. An alternative is presented in [Jon95, JK97] to overcome this problem.
Another alternative uses static analysis [NMW02] to avoid overhead when the compiler
knows that the pointer is used safely.

The approach presented in [LC02] is less precise because it checks only that functions
of the C library do not copy more data than were allocated for the destination memory
area. The problem is that when a memory block is allocated, it can be used for a
structure that contains one array and some other data. In this case, an overflow can
overwrite the other data silently. It is possible to achieve similar results for all memory
accesses by changing the way memory is allocated [Ele]. A variant of this technique
ignores completely the size of actual data and compares directly the size of the source
and destination memory areas [HB03]. This helps detecting more errors during the
testing phase, but it also introduces false positives.

Another technique allows checking that every memory access [HJ91a] is in a memory
area correctly allocated. Once again, this is not as precise as real array bounds checking.
One advantage is that it does not require the source code. An alternative uses static
analysis [YH03] to minimize the overhead.
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2.2.2 Protecting the Return Address

The return address is important because it indicates where the execution continues
when a procedure ends. If an attacker can overwrite it, he can instruct the program
to continue its execution in code he chooses arbitrarily [Ale96]. This is why many
techniques try to protect the return address more specifically.

One of them consists in modifying the compiler so that it inserts a canary [CPM+98]
before the return address. This is an arbitrary value that is checked before the control
returns to the calling procedure. If the canary has changed, the program is aborted
because an overflow might have overwritten it and the return address.

If the compiler cannot be modified, the functions that are known to be the cause of
many overflows can be modified [TS01] to explicitly check that they will not overwrite
a return address.

An alternative is to use an entirely different stack [Sta, CH01] for return addresses
and local variables. Sometimes, it is also possible to implement this protection in the
operating system [FS01] instead of the compiler.

2.2.3 Detecting Abnormal Behavior

Here we present techniques that do not detect overflows directly. Instead, they try
to detect abnormal behavior that may be caused by overflows. The idea is that if an
attacker uses a buffer overflow to take over control of a program, it will probably change
its observable behavior.

The first thing that can be observed when running a program is the sequence of
system calls it performs. One can verify that it corresponds to what the program is
supposed to do. There are many ways to determine whether a sequence of system
calls is acceptable or not. A simple approach is to run the program and extract the
set of system calls [Pro03]. A more precise specification of a program can be built
manually [SU99], by automatic learning [SBDB01] or by static analysis [Wag00].

Using a special interpreter, it is also possible to monitor every control flow trans-
fer [KBA02] in a program to ensure that it is appropriate, as defined by a given policy.
For example, it is possible to ensure that a return instruction returns to an instruction
that follows a call, or that a library is called only through a declared entry point. This
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is called program shepherding.

The two previous techniques monitor some aspect of the execution of the program,
but it is also possible to detect abnormal data that are inserted in a program. For
example, abstract payload execution [TK02] checks whether data received from a client
contains executable code. If it is the case, it may be a sign that the program is under
attack. The attack can be stopped before an overflow is exploited so that no damage
is done.

2.3 Other Approaches

Here we present miscellaneous approaches that aim to detect buffer overflows or prevent
their exploitation and which do not fit in the previous sections.

2.3.1 Using Libraries with Safer Interfaces

Some functions of the C library do not accept the size of the buffer in which they put
data. One can avoid these functions and use safer alternatives. For example, strlcat()
and strlcpy() [MdR99] can replace strcat() and strcpy() respectively.

2.3.2 Encrypting Pointers

When an attacker exploits an overflow to gain control over a program, one step often
requires giving an arbitrary value to a pointer. To avoid this, a compiler can be modified
to encrypt pointers [CBJW03, PL02] using a secret key. Without knowing the secret
key, which can change at every execution, the attacker can only give a random value to a
pointer. It may crash the program, but encryption avoids more important consequences.

2.3.3 Preventing Execution of Arbitrary Code

Many attacks inject arbitrary code before forcing the program to execute it by exploiting
a buffer overflow. Some programs need to generate and execute code at run time to work
properly, but many do not. In the latter case, the operating system can ensure that the
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stack [Sol97b] and the heap [dR03, Mol03, Sta01, PaX00, PaX02] are not executable to
thwart these attacks.

2.3.4 Moving the Stack and Libraries

Most attacks doing more than just crashing a program must know the exact, or at
least approximate [Ale96], location of the code that is to be executed. The location
of the stack [Ket03] and that of shared libraries [Woj01] can be randomized to make
many attacks ineffective. Libraries can also be moved to addresses containing a byte
having the value zero [Sol97a], which is more difficult to generate for an attacker in
many situations.

2.3.5 Reordering Local Variables

A compiler can be modified to reorder [EY00] local variables so that pointers are before
buffers on the stack. This way, if an overflow happens, the pointers can still be used
safely. This can prevent many attacks from working correctly.

2.4 Existing Tools to Build Static Analyses

In this section, we present existing tools that can help building new static analyses and
we evaluate their suitability for verifying the memory safety of a program.

2.4.1 Compilers

A compiler can be a good starting point to construct a new analysis if its internals
are well documented and not too complex. This is because it already implements
the parsing of the source code into more program-friendly structures and it usually
incorporates some kind of static analysis (for optimizations) that can be reused. For
example, Vulncheck [Sot05] is a tool that runs inside GCC to help detecting many
vulnerabilities in programs. Its analysis uses a combination of taint analysis and value
range propagation, but value range propagation is already present in GCC and it is
reused as is.
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2.4.2 CQual

CQual [CQu] is an open-source tool that allows extending the syntax of C with user-
defined type qualifiers and specifying rules on them. CQual then performs qualifier
inference checks using constraint-based type inference. This approach has been used
to verify some safety properties on C programs [STFW01, FTA02, Fos02], but it is not
powerful enough to verify more complex properties such as memory safety.

2.4.3 Banshee

Banshee [Ban] is an open-source tool that automatically generates an efficient resolu-
tion engine for a constraint system, given its specification as input. It also supports
backtracking and persistence of constraints, thus it can help creating efficient incre-
mental analyses. To build an analysis, one only has to create a program that extracts
constraints from source code and feed them to the resolution engine. Banshee was used
to implement some points-to analysis [KA05], but it is not powerful enough for more
complex context-sensitive analyses. Moreover, being constraint-based, it is not designed
to support the implementation of many analyses created using the theory of abstract
interpretation.

2.4.4 FIAT

FIAT [HMCCR94] is a framework for interprocedural analysis and transformation de-
signed to implement optimizations during compilation of code. FIAT is not publicly
available and our goal is not to optimize code, but this framework has a few interesting
features. Firstly, it does not work directly on the code to analyze, but on an abstract
representation of it. This allows FIAT to be used in different compilers. Secondly,
it provides the logic that is common to all monotone data-flow analyses. Thirdly, an
analysis can request the result of another analysis without specifying explicitly the or-
dering between the different analyses. Those are all useful features when building new
analyses.
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2.4.5 The Hob System

The Hob system [ZLKR04] and its successor Jahob can verify high-level properties
to ensure data structure consistency by applying different verification techniques to
different parts of a program. For example, they could use a simple form of static
analysis for most of the program, and a theorem prover for a small part of it that is
more difficult to verify. They are both open-source, but since they analyze languages
that are already memory-safe, they are not compatible with the verification of memory
safety in C and C++. However, some of the techniques they use might be useful to
verify programs using complex data structures.



Chapter 3

Preliminary Choices

Some choices were made at the start of the project, before writing the first lines of code.
They were about the openness of the development, the code that will be analyzed and
the implementation language. This chapter discusses why they were made.

3.1 Open Source Development

Very early, we decided to create an open-source [Per98] project to implement our static
analysis. This means that anyone can use, modify and redistribute our software. We
have many reasons for doing so. The first one is that we want to show to the world the
kind of research we are doing. Making our software available to all on the Internet and
applying the adage release early, release often [Ray00a] contributes to that.

Another goal is attracting competent people in the project so that we can achieve
better results faster. This also increases the chances that our software will continue to
exist and improve after we stop working on it. This is important because the problem
we are working on is hard and we knew from the beginning that we could not do alone
everything we wanted in only two years.

A related goal is to help research on static analysis, and particularly its application
to the detection of buffer overflows and the verification of memory safety. Often, when a
paper describes an approach, no source code is provided. In this case, other researchers
lose much time reimplementing it before they can improve it. With an open-source
implementation of our analysis, the barrier to entry in the field is smaller.
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Table 3.1: Example of an RTL jump instruction.

(jump_insn 14 13 15 (nil)
(set (pc)

(if_then_else (le (reg 17)
(const_int 0))

(label_ref 17)
(pc)))

-1 (nil) (nil))

This example shows the instruction of a function that is numbered 14. It is inserted
between instructions 13 and 15 (instructions are not always numbered sequentially).
It describes a jump to the label number 17 (i.e., the program counter, pc, is set) if
the value of the register 17 is lower than or equal to the integer 0.

Chapter 8 describes in more details the open source development process we applied
to our project and what ensued from it.

3.2 RTL as the Language to Analyze

The C and especially the C++ languages are complex and full of subtleties; we wanted
to avoid parsing them and understanding their complete semantics. We knew that
reusing some parts of a compiler could help us, so we studied the internals [GCC03]
of GCC 3.3.2, the most recent version of the compiler at that time. We learned that
there are two different intermediate representations of code used by GCC during the
compilation of C and C++: trees and RTL.

Trees are the high-level intermediate representation for the C and C++ languages.
They are structures close to the syntax of these languages, so they can save us only the
parsing; much of the complexity still remains.

RTL, on the other hand, is the low-level intermediate representation for all the lan-
guages supported by GCC. This representation is much closer to an assembly language,
yet it remains almost architecture-independent. In RTL, a function body is a sequence
of RTL instructions.

Table 3.1 shows an RTL instruction that describes a jump as an example of how
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RTL is structured. Every pair of parentheses delimits an RTL expression and an RTL
instruction is itself an RTL expression. The first element of every RTL expression is
the RTL code, which defines the meaning of its operands and the expression as a whole.

We decided to base our analysis on RTL because it has the following advantages
over direct analysis of C and C++ source code.

• It saves us the parsing of C and C++, two languages with a complex grammar.

• It is language-independent; our analysis will not have to know anything directly
related to C or C++, and eventually, we could also analyze other languages
supported by GCC such as Java and Fortran.

• It is almost architecture-independent; our analysis will only need to know minimal
information that varies depending on the target architecture.

• The semantics of RTL is simpler than that of C and C++ because it has fewer
different constructs.

• RTL is not as ambiguous as C and C++. The C and C++ standards have many
areas that are designated as implementation defined ; GCC must disambiguate
much of the code that falls in these areas before it is transformed into RTL.

Still, RTL is not perfect for our purpose; it is not completely architecture-independent
and it does not contain type information about variables. However, we thought the ad-
vantages would outweight the disadvantages.

GCC 4.0 introducedGIMPLE, a third intermediate representation between trees and
RTL. It was created for the new optimization framework of GCC based on static single
assignment [CFR+91]. It might be a better representation than RTL for our purpose
because it is designed to be straightforward to analyze and it keeps information about
high-level attributes of data types. Since GIMPLE appeared too late for us, we did not
study it in depth.

3.3 Python as the Implementation Language

The language we chose to implement our analysis is Python. This is a dynamically typed
language that supports both object-oriented and functional programming paradigms.
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Table 3.2: A simple Python program.

# Class A inherits from class object
class A(object):

# Constructor with one (explicit) parameter
def __init__(self, value):

self._member = value

# Method without (explicit) parameter
def output(self):

print "Class A with value", str(self._member)

# Create an instance of class A
a = A(42)

# Call a method on object a
# This will print: Class A with value 42
a.output()

It is not the ideal language for an analysis that will have to run on many large programs
because it is not very fast, but Python is certainly a good choice for a prototype that
needs to test different directions, because of its dynamic nature and its expressiveness.
Chapter 7 demonstrates that these aspects of Python can be useful.

Some Python code will be presented in this thesis. It should be relatively easy to
understand for people familiar with object-oriented and functional programming. An
important thing to know is that in Python, a method receives the object to which
it is applied in its first formal parameter, which is named self by convention. This
parameter is the equivalent of this, which is passed implicitly in languages such as
C++ and Java. The constructor of a class is named __init__ and its first formal
parameter is the object to initialize. In Python, variables and members are created
automatically at the time of their first assignment; there are no declarations. Table 3.2
shows a simple Python program that defines a class and uses it.
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Proof of Concept

To check whether it was feasible to build an analysis given our preliminary choices, we
decided to implement a trivial analysis of RTL using Python. The goal of this analysis
was to flag all program points that access memory in a given function.

This chapter describes how we achieved that. In particular, we explain our mod-
ifications to GCC for dumping RTL, we describe how RTL is represented in Python
and we present our trivial memory access analysis. The code developed for this proof
of concept has been published as RTL-Check 0.0.1 and some of it is still in use in the
most recent version of RTL-Check1.

4.1 Dumping RTL from GCC

Since we want to implement our analysis in Python, not inside GCC, we need a way
to dump the RTL representation of a program before we can analyze it. GCC already
has some options to dump an ASCII representation of RTL at different stages during
optimizations. For example, the option “-dr” creates a dump file when RTL is first
generated. There are two problems with these dumps. First, there are some cases
where not all the RTL instructions are dumped. Second, since the dump is in ASCII
format, it must be parsed before it can be analyzed; we would like to avoid that, if
possible.

To overcome these problems, we created a new binary dump of RTL. We modified
1The RTL-Check home page is at http://rtlcheck.sourceforge.net/.

http://rtlcheck.sourceforge.net/
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the functions open_dump_file() and close_dump_file() defined in gcc/toplev.c
so that our binary dump file is produced every time the usual ASCII dump file is
requested. This means that we can use the already existing options of GCC to dump a
binary representation of RTL at different stages during the compilation.

Our format for the dump file is close to the in-memory structures used by GCC to
represent RTL expressions, but we cannot use a blind copy of these structures because
they have a size that varies according to the RTL code of each RTL expression and
because when an operand is a pointer to another RTL expression, the latter must also
be dumped.

In GCC, every possible kind of RTL expression (RTL code) is defined in the file
rtl.def using the macro DEF_RTL_EXPR. This macro as 4 parameters:

• The internal name of the RTL code;

• Its name as string;

• A string that describes the parameters for the expressions of this kind, if any;

• The class of the expressions of this kind.

The third parameter is what allows us to correctly dump RTL in a generic way, with-
out having to encode additional knowledge about every RTL code. The file dump-rtl.c
is the one implementing the binary dumping of RTL and it is still in use in current ver-
sions of RTL-Check.

4.2 Accessing RTL from Python

On the Python side, we created classes to represent dump files (RtlFile), functions
(RtlFunction) and RTL expressions (Rtx and its subclasses). We also created a func-
tion that instantiates these classes from a given binary dump file. This code can be
found in rtl.py. It has evolved somewhat since the first version, but much of it is still
present in current versions of RTL-Check.

We also had to create a Python version of the low-level definitions from rtl.def so
that, among other things, we could associate a meaning to the numbers we find in binary
dump files. The corresponding Python definitions can be found in rtldef.py, which is
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created automatically using the C preprocessor and the files rtl.def and rtldef.src.
The latter contains a special implementation of the macro DEF_RTL_EXPR.

Our classes are more interesting than the C structures used in GCC because they
offer a type-safe interface for accessing the operands of RTL expressions. Moreover,
having a different subclass for each RTL code allows us to use properties with significant
names instead of accessing the operands using their position number. We did not define
an Rtx subclass for all RTL codes; we defined only the subclasses that were needed for
our proof of concept.

We decided to implement the visitor design pattern for our RTL classes to make
it easier to create code that goes over the definitions of a function, e.g. to analyze it.
Section 7.3 explains how the visitor design pattern works and how we implemented it.

The first use of the pattern was to create a visitor that simply prints an ASCII
representation of RTL. It allowed us to check that the binary dump, its interpreta-
tion and our classes were all working properly. Since RTL can be dumped at various
stages during optimizations, we also used this visitor to determine which one would be
best to use for our analysis. We discovered that, as the compilation progresses, more
architecture-dependant constructs are introduced in the RTL of a function. Thus, we
decided to use RTL from the first generation.

4.3 A Trivial Memory Access Analysis

The last step was to implement the actual analysis. With the infrastructure described
above, it was not difficult. The idea was to write a visitor that loops over all the
instructions and that traverses their RTL subexpressions recursively to analyze them.
The visitor flags a memory access only when it encounters an expression with the RTL
code MEM.

Most of the code of the visitor implements the traversal of RTL expressions. It was
written incrementally; when the visitor encountered an RTL code it did not know how
to handle, it aborted with a message that indicated the next RTL code that had to be
supported to continue the analysis of the function.

Our proof of concept was considered a success when the analysis correctly flagged
all the memory accesses in two recursive versions of the factorial function. The visitor
needed about fifty lines of code to do that.



Chapter 5

The RTL-Check Static Analysis
Framework

This chapter describes the RTL-Check static analysis framework1. This framework
makes it possible to build complex analyses from small reusable components. It is
born from our first unsuccessful attempt to implement an analysis for checking whether
some code has memory access errors. The problem was that the size of the code of the
analysis grew rapidly while its precision improved slowly. The analysis was monolithic
and more and more difficult to understand.

The main idea in the design of the RTL-Check framework is that a complex analysis
should not be built in one piece. It should be composed of modules that are as simple as
possible, and above all, the relations between them should be explicit and well defined.
This is necessary so that an analysis can be extended easily. Another important aspect
of this framework is that it integrates some patterns that are often repeated in different
analyses. This makes it possible to implement an analysis by specifying only the part
that is specific to it.

In spite of its name, the RTL-Check framework is independent of RTL. That being
said, it provides some supplementary services related to RTL. It is also independent of
the memory access analysis, which is described in Chapter 6. It is designed to support
data flow analyses, and its suitability for other kinds of analysis has not been explored.

Section 5.1 describes the structure of the RTL-Check framework. It explains how the
different kinds of modules it supports work together to perform an analysis. Section 5.2

1 The RTL-Check home page is at http://rtlcheck.sourceforge.net/ and its current version
is 0.1.7 as of this writing.

http://rtlcheck.sourceforge.net/
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discusses some theoretical results of static analysis and their relation with the RTL-
Check framework. In particular, it shows how an instance of a monotone framework
can be cast in our framework and how some aspects of abstract interpretation can be
implemented.

5.1 Description of the Framework

As we already mentioned, modularity is a central concept in the RTL-Check framework.
To render the creation of analyses possible from simple and reusable components, the
framework is structured around the following four important kinds of modules.

• Solvers : They keep information about some properties of the program being
analyzed. They can be queried and updated. An analysis can use many solvers to
achieve its goal. Taken together, the solvers form what we call the abstract state
(for a given analysis).

• Interpreters : They update the solvers according to the instructions of the program
being analyzed.

• Policies : They define some logic that is required by other parts of the analysis.
They can have a state but only if it is related to the whole analysis, not to a
particular abstract state.

• Analyses : They implement the glue between all the parts of the analysis. They
indicate which solvers, policies and interpreters will be used, and they include the
main algorithm for the analysis.

In the framework, these modules are classes. Each of them represents an aspect that
is either specific to an analysis or shared among many analyses. To create an analysis,
one can create new modules or reuse existing ones from other analyses.

Figure 5.1 shows the class diagram of a fictive analysis implemented using the RTL-
Check framework. This analysis (UserAnalysis) uses two solvers, two interpreters and
two policies in addition to another analysis, which itself can use other modules not
shown in the figure.
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Figure 5.1: UML diagram of an analysis implemented using the RTL-Check framework.
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We use a notation derived from UML. A class is represented by a rectangle divided in
three parts. The name of the class is in the top section, attributes and get-properties2

are in the middle and methods are at the bottom. Static attributes are indicated
explicitly. Arrows represent inheritance and black diamonds represent composition.

The diagram shows that the framework provides a base class for analyses, inter-
preters, solvers and policies. The framework also provides a class that groups solvers
(to represent the abstract state), interpreters and policies. These classes, respectively
_State, _Interpreters and _Policies in the diagram, are specifically adapted for the
dependencies, direct or indirect, of each analysis.

Other aspects of the diagram specific to a given kind of modules will be explained
in the following sections. Sections 5.1.1 to 5.1.4 describe solvers and abstract states,
policies, interpreters and analyses in more details. Section 5.1.5 explains how it is
possible to declare dependencies between modules and what it means.

5.1.1 Solvers and Abstract States

A solver is a class that represents some properties of a program at a given point. A
property could be almost anything. For example, it could be the least possible value of
a variable, whether a variable is odd or even, information about a pointer, information
about the variables from which a value is derived, or the conjunction or disjunction of
many properties.

A solver fulfills two main functions. Firstly, it collects information about the prop-
erties it is interested in. It is usually an interpreter (see Section 5.1.3) that gives to the
solver the information it needs, but the information can also come from somewhere else.
Secondly, it provides an interface that allows other modules to query it. The interface
used to collect information is often the same for many solvers, but the query interface
is always different because it is directly related to the property implemented by the
solver.

A class that defines a solver should inherit from BaseSolver and its name should
end with “Solver”. BaseSolver defines the following two get-properties for the solvers.

• analysis: The analysis object that uses the solver.
2We use the term get-properties (of a class) to avoid confusion with the program properties being

analyzed.
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• state: The abstract state of which the solver is part (see below).

In addition to their interfaces for collecting information and query, every solver
must implement a common interface to be usable in the framework. This interface is
composed of the following constructor and methods, which are called by the framework;
they should not be called directly by the user.

• __init__(self, state, **args): The constructor of the class that defines the
solver will receive one parameter (in addition to self), the abstract state of which
the solver is part. It may also receive other optional parameters in args, which
is a dictionary. The solver can use these parameters to allow the creation of an
instance that represents something other than the default property. If it does
not know about some (or all) of the parameters that are passed, it must ignore
them. It must call the constructor of its base class, BaseSolver, with the same
parameters.

• copy(self, newState): This method must return a new instance of the solver
that is a copy of self, but which is part of newState instead of self.state.

• isMoreInformative(self, other): This method must return whether the in-
formation contained in self is more informative than or as informative as that
of other. Thus, it should be read as “self is at least as informative as other”.
When this method is called, the solver other is of the same type as self.

• join(self, other, newState): This method must return a new instance of the
solver that represents the merged information of self and other. When join()
is called, the solver other is of the same type as self. It is called to merge
the information of two program paths. When combining information from two
or more paths, there can be a loss of precision, but there cannot be a gain of
precision. Thus, assuming this method returns returnedValue,

isMoreInformative(self, returnedValue)

and

isMoreInformative(other, returnedValue)

should both be True.
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There are two other methods, widen() and narrow(), that can be implemented
optionally by a solver. These methods are discussed in Section 5.2.2.

Since the property that we are interested in when doing static analysis is often
rather complex, using only one solver is usually not enough to build an analysis that
gives the desired result. Thus, many solvers are combined to form an abstract state.
The property represented by an abstract state is the conjunction of all the properties
represented by the solvers it contains. For example, consider an abstract state composed
of two solvers, one keeping information about the lower bound of variables and the other
keeping information about pointers. The first one could represent the property “X is
greater than 0 and Y is greater than 10” and the second one could represent the property
“Z is either a pointer to X or a NULL pointer”. Then, the abstract state would represent
the property “X is greater than 0, Y is greater than 10 and Z is either a pointer to X
or a NULL pointer”.

It is important to note that a solver can implement a notion of disjunction (e.g.
“either a pointer to X or NULL”) but an abstract state is always a conjunction of
solvers. This makes it easier to have solvers that are independent of each other.

Each analysis has a different class that describes its abstract state. This class is
provided by the framework automatically and new instances can be created by calling
the method newState() of the analysis class, see Section 5.1.4. The abstract state
class defines the following methods which call the corresponding method of each solver
it contains. These methods can be called by the user to implement an analysis.

• __copy__(self): This method returns a new abstract state that is a copy of
self. It can be called as copy(abstractState).

• isMoreInformative(self, other): This method returns whether the informa-
tion contained in self is “at least as informative as that of other”.

• join(self, other): This method returns a new instance of the solver that rep-
resents the merged information of self and other. It can be called to merge the
information of two program paths.

• widen(self, old): This method is discussed in Section 5.2.2.

• narrow(self, old): This method is discussed in Section 5.2.2.

Moreover, the abstract state class defines one get-property to obtain each of the
solvers it contains. The name of the property is that of the solver with a lower case
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first character and no “Solver” at the end. For example, we access the PointerSolver
of abstracState like this: abstractState.pointer.

At any moment during the analysis, there are two abstract states accessible from
the analysis object. The first one is called currentState and it represents the state
of the program before the instruction being analyzed. The second one, resultState,
is the state processed by the analysis. This means that resultState is the same as
currentState at the beginning of the analysis of an instruction, but it is gradually
transformed by the analysis into the abstract state that represents the program after
the instruction. Section 5.1.4 contains more details about this.

5.1.2 Policies

The main goal of the policies is to support static analysis by implementing some func-
tions that can be accessed from any part of the analysis (solvers, interpreters and other
policies). A policy can have a state that is global to one instance of an analysis, but it
cannot have a state that is specific to a given abstract state. This kind of state must
be kept in a solver. See Chapter 6 for some examples of policies.

In the framework, a class that defines a policy should inherit from BasePolicy and
its name should end with “Policy”. BasePolicy has the following get-property.

• analysis: The analysis object that uses the policy.

Because the services provided are very different from one policy to another, the
common interface of all the policies has only a constructor, which is always called by
the framework.

• __init__(self, analysis): The constructor of the class that defines the policy
will receive one parameter (in addition to self), the analysis of which the policy
is part. It must call the constructor of its base class, BasePolicy, with the same
parameters.

The framework automatically provides a class that groups all the policies required
for a given analysis. In Figure 5.1, _Policies plays this role for UserAnalysis. This
class has one get-property to obtain each policy it contains. The name of the property
is that of the policy with a lower case first character and no “Policy” at the end.
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5.1.3 Interpreters

The job of an interpreter is to understand the instructions of the program and to
transform resultState accordingly. To do this, an interpreter can use policies and
solvers from both currentState and resultState. It can also use the result of other
analyses, i.e., analyses in which it does not run.

The framework does not require any interpreter in order to have a complete analysis.
For some very simple analyses, it might be easier to perform the job of the interpreter
directly in the analysis class. On the other hand, a complex analysis might require
more than one interpreter.

A class that defines an interpreter should inherit from BaseInterpreter, which has
the following get-property.

• analysis: The analysis object that uses the interpreter.

The interface that the interpreter implements can be anything, but it usually needs
only one method in addition to the constructor.

• __init__(self, analysis): The constructor of the class that defines the inter-
preter will receive one parameter in addition to self, the analysis object of which
the interpreter is part. It must call the constructor of BaseInterpreter, its base
class, with the same parameters. Often, an interpreter does not even have to
provide a constructor because it does not keep any state. In this case, the one of
the base class is used automatically.

• interpret(self, instr): It should modify self.analysis.resultState ac-
cording to instr, the instruction that must be interpreted.

An interpreter also has a static attribute _stateInterfaces which is a list of strings
that indicates to the framework the name of the methods the interpreter will use to
modify analysis.resultState. The framework will provide an implementation of
each of these methods in the abstract state class of the analysis that will call, in turn,
the method of the same name for each solver that has such a method. This makes the
interpreter independent of the solvers; new solvers can be added to an analysis without
modification to the interpreter and the interpreter does not force the use of any specific
solver.
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An interpreter can also omit to declare any state interface and use directly the
interface of a specific solver. However, this way it would be more difficult to extend
analyses that use such an interpreter.

The framework automatically defines a class that represents the set of interpreters
required for a given analysis. For example, in Figure 5.1, it is _Interpreters that
represents the set of interpreters for UserAnalysis. Such a class provides the following
method.

• interpret(self, instruction): It calls the method interpret() of each in-
terpreter in turn.

This class also provides one get-property to obtain each of the interpreters. The
name of the property is that of the interpreter with a lower case first character.

5.1.4 Analyses

An analysis class is the glue between all the parts required to perform static analysis
(solvers, policies, interpreters and other analyses). It implements the main loop of the
algorithm and it calls the interpreter(s) as needed. It can also provide some services to
other parts of the analysis while it runs (though it is probably better to have them in
policies) and other services to report the results of the analysis when it is done.

A class that defines an analysis must inherit from BaseAnalysis. The former must
provide the following constructor, method and attributes.

• __init__(self, **args): The constructor must receive its parameters in a dic-
tionary of optional parameters (**args) and it must ignore those it does not know
about. It must also pass this dictionary to the constructor of its base class.

• analyze(): This method runs the analysis and should not take any parameter.

• _currentState: This attribute represents the abstract state before the interpreta-
tion of the current instruction. It must be set by the analysis before interpret()
is called.

• _resultState: This attribute represents the abstract state that must be modified
according to the instruction being analyzed. It must be set by the analysis before
interpret() is called.
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The use of a dictionary of parameters for the constructor is motivated by the fact
that the framework allows one analysis to use the results of one or more other analyses.
It is the framework that calls the constructor of each analysis (except of course for the
top-level analysis) but it does not know what parameters are required for each of them.
The dictionary of parameters solves this problem because it forces a common interface
for all analyses. Thus, when instantiating an analysis, it is important to also pass the
parameters for all dependent analyses, not only the parameters of the top-level one.
In fact, when a top-level analysis depends on another, all the parameters of the latter
become parameters of the top-level one and they should be documented as such.

Often, the constructor needs only one parameter named function: the function to
analyze. This parameter is usually shared between all analyses. However, the framework
makes it possible to define analyses that have more parameters.

The class BaseAnalysis also provides the following get-properties and methods.

• newState(self, **args): This method creates an instance of the abstract state
with the dictionary of optional parameters (**args) passed to the constructor of
each solver.

• interpreters: This get-property returns the object that represents all the inter-
preters of the analysis.

• policies: This get-property returns the object that represents all the policies of
the analysis.

• currentState: This get-property has a meaning only while the analysis calls an
interpreter. It returns the abstract state before the interpretation of the current
instruction.

• resultState: This get-property has a meaning only while the analysis calls an
interpreter. It returns the abstract state that must be modified according to the
instruction being analyzed.

Moreover, the framework adds one get-property for each policy and interpreter that
the analysis uses. In both cases, the name of the get-property is that of the class that
defines the policy or the interpreter with a lower case first character.
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5.1.5 Dependencies between All Modules

The different kinds of modules (solvers, policies, interpreters and analyses) can use
each other almost arbitrarily. However, the framework must know about the relations
between all of them to implement some of its aspects. For example, it must know all
the policies needed to run an analysis, in what order the analyses must be run if there
is more than one, and in what order the solvers of an abstract state should do their
job. The general rule is that if module X might use a service from module Y, then
module Y should do its job before module X. Thus, every module has to declare its
dependencies. Also, the framework cannot work if there is a cyclic dependency between
a set of modules because it would not know which one to run first. For example, if
Analysis1 uses Policy2, which in turn uses Analysis3, then Analysis3 can use neither
Analysis1 nor Policy2.

The interface used to declare dependencies is the same for all kinds of modules. A
class that defines a module can use the following four static attributes to declare its
dependencies.

• _requiredSolvers: The list of solvers used by this module.

• _requiredPolicies: The list of policies used by this module.

• _requiredInterpreters: The list of interpreters used by this module.

• _requiredAnalyses: The list of analyses used by this module.

In all cases, the lists must contain only the class objects that define the required
modules, not instances of these classes. The four attributes are optional, i.e., if a module
does not use any solver, it does not have to declare _requiredSolvers and the same
is true for policies, interpreters and analyses.

The framework traverses the dependencies recursively from the top-level analysis.
This means that a module does not have to redeclare the dependencies of the modules
it uses. It should only list the modules it uses directly. For example, if “Analysis1”
uses only “Interpreter2”, which uses “Policy3”, then “Analysis1” should not declare a
dependency on “Policy3”. The framework also looks at the base classes of a module
when it searches for its dependencies. Thus a module does not have to redeclare them,
even if it calls a method of its base class that uses them. Once again, it should declare
only its direct dependencies.
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Every kind of module can use a solver, a policy or an analysis, so there is no restric-
tion on dependencies between these kinds of modules, except for cyclic dependencies.
Concerning interpreters, they should be used directly only by analyses but any kind of
module can still declare a dependency on such module to make sure the interpreter will
run.

Once the framework has collected all the dependencies, it can determine the order
in which the solvers, the interpreters and the analyses will run. It is always possible to
build these orders because no circular dependency is allowed between the modules.

The order of analyses is used when the user creates an instance of an analysis. At this
time, all the dependent analyses are created and run, starting with the ones that have no
dependencies. The order of solvers is used by the abstract state class. It calls the differ-
ent solvers in the right order when an operation is executed on the abstract state. The
order of interpreters is used only if the analysis calls self.interpreters.interpret(
insn). If it does, the interpret() method of each interpreter is run, starting with the
ones that have no dependency on other interpreters.

5.2 RTL-Check compared to Theoretical Analysis
Frameworks

This section explains the relation between RTL-Check, monotone frameworks and ab-
stract interpretation. It also discusses general considerations about the design of an
analysis to be implemented using the RTL-Check framework.

Principles of Program Analysis [NNH99] is an excellent reference for more informa-
tion about many of the concepts presented in this section.

5.2.1 Monotone Frameworks

Classical data flow analyses are often categorized by the combination of the direction of
the analysis (forward or backward) and the size of the wanted result (smallest or largest).
Thus, there are four different kinds of analysis but they share a lot of similarities.
Monotone frameworks abstract the differences between all these analyses and provide
a way to look at them in a generic way.



Chapter 5. The RTL-Check Static Analysis Framework 39

A monotone framework is defined by:

• L, the property space of the framework, a partially ordered set (L,v);

• F , a set of monotone functions over L.

The property space L must have a least element that we will note ⊥L and it must
satisfy the ascending chain condition, which means that each ascending chain (ln)n∈N
eventually stabilizes, i.e., ∃n : l0 v l1 v · · · v ln = ln+1 = · · ·. The property space
must also have a combination operator

⊔
: ℘(L) → L which is the least upper bound

operator. This implies that L is a complete lattice.

A monotone function f is one that respects a v b ⇒ f(a) v f(b). The set of
monotone functions F determines the functions that the framework will have to deal
with. It must contain all the functions that the analysis will use and the identity
function, and it must be closed under function composition. This set can be simply the
set of all monotone functions over L or it can be more restrictive.

We assume that every instruction of the program has a distinct label. An instance
of a monotone framework (a given analysis) is defined by:

• L, the property space of the monotone framework;

• F , the set of function of the monotone framework;

• F , a finite flow of the program to analyze;

• E, a set of extremal labels;

• ı ∈ L, an extremal value;

• f·, a mapping from labels to transfer functions of F .

The flow F is the set of edges (pairs of labels) of the control flow graph of the
program. For backward analyses, edges are reversed. The set of extremal labels E

contains either the label of the first instruction (for forward analyses) or the labels of
instructions where the program ends (for backward analysis). The extremal value ı is
the value of the property at extremal labels. This is often ⊥L or

⊔
L, but it could be

something else.
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Table 5.1: Algorithm to solve an instance of a monotone framework.

INPUT: (L,F , F, E, ı, f·): an instance of a monotone framework
OUTPUT: Before: mapping of the value of the property before each instruction.

After: mapping of the value of the property after each instruction.
TEMP: W: the list of edges to process
METHOD: W := new List

for all edges (l, l′) in F do
add(W, (l, l′))
Before[l] := ⊥L

Before[l′] := ⊥L

for all labels l in E do
Before[l] := ı

while not empty(W) do
(l, l′) := pop(W)
if fl(Before[l]) 6v Before[l′] then

Before[l′] :=
⊔{Before[l′], fl(Before[l′])}

for all l′′ such that (l′, l′′) ∈ F do
add(W, (l′, l′′))

for all labels l such that l ∈ E or ∃l′ : (l, l′) ∈ F or ∃l′ : (l′, l) ∈ F do
After[l] := fl(Before[l])

The mapping f· indicates the transfer function that must be used for each label.
A transfer function describes how an instruction transforms the property analyzed.
Table 5.1 shows the algorithm that can be used to solve an instance of the monotone
framework.

Using the RTL-Check framework, it is easy to implement a monotone framework in
three parts:

• A solver class defines the property space;

• An interpreter class implements the mapping from labels (instructions) to mono-
tone functions and the monotone functions themselves;

• An analysis class defines the links between the solver, the interpreter and the in-
stance of the framework (flow, extremal labels and extremal value) and it provides
an interface to make available the results of the analysis.
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Defining a solver for a property space is straightforward. By default, the construc-
tor should create a solver that corresponds to ⊥L, the least element of L. It can also
allow optional parameters that make it possible to create a property different from ⊥L.
For example, it is often useful to have a solver that corresponds to

⊔
L. The method

isMoreInformative() is the operator v and the method join is the operator
⊔
. There

must be a method copy() that returns a copy of the solver. The solver must also imple-
ment the interface used by the interpreter to transform the property and an interface to
query its state. Table 5.2 presents a simple working solver for the liveness of registers.

The interpreter does not have to follow the formal definition of a monotone frame-
work as closely as the solver does. There is no need to have a real mapping from
labels to transfer functions. In fact the monotone functions do not have to be repre-
sented directly. Instead, the interpreter can “interpret” the program, one instruction
at a time, and modify resultState accordingly. This is the purpose of the method
interpret(), which receives the instruction to interpret as parameter. Instructions
are usually represented by instances of the class RtxGenInsn and there is no real need
for labels. The interpreter can also use currentState, which corresponds to the value
that would be passed to the monotone function in the monotone framework. At the
moment interpret() is called, currentState and resultState are equal.

An interpreter can use two ways to modify resultState. The first one is using
directly a solver and its interface. In this case, the interpreter should declare that it
depends on this solver with _requiredSolvers. The second one requires the interpreter
to declare in _stateInterfaces the methods it wishes to use to communicate with
solvers. It can use these methods on resultState directly, which will then dispatch
the call to all the solvers that implement this interface. The first way prevents the
interpreter from being used with a different solver. The second one is preferred because
it is more extensible. Table 5.3 presents an (incomplete) interpreter for the liveness of
registers.

The analysis class completes the implementation of an instance of a monotone frame-
work. It is greatly simplified by the fact that the RTL-Check framework provides a class
called MonotoneAnalysis that implements the algorithm of Table 5.1 and it provides
an interface to obtain the abstract state before and after the interpretation of a given
instruction. The analysis class only has to indicate the following items in addition to
its interface for querying the results of the analysis:

• The solver that defines the property space (_requiredSolvers);

• The interpreter that transforms the property space according to the instructions
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Table 5.2: Solver for the liveness of registers.

class LivenessSolver(BaseSolver):
# Common interface for all solvers
def __init__(self, state, **args):

BaseSolver.__init__(self, state, **args)
# The least element is the empty set
# (it is consistent with join and isMoreInformative)
self._live = set()

def copy(self, newState):
new = LivenessSolver(newState)
new._live = set(self._live)
return new

def join(self, other, newState):
new = LivenessSolver(self._state)
new._live = self._live.union(other._live)
return new

def isMoreInformative(self, other):
# Less live variables is more precise
return self._live.issubset(other._live)

# Interface of this solver for modifications
def addLive(self, regs):

self._live.update(regs)

def removeLive(self, regs):
self._live.difference_update(regs)

# Interface of this solver for query
# Make it possible to iterate over live registers
def __iter__(self):

return iter(self._live)
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Table 5.3: Interpreter for the liveness of registers.
This table shows two implementations of an interpreter. The first one directly de-
pends on a solver and the second one (preferred) uses an abstract state interface.

class LivenessInterpreter1(BaseInterpreter):
_requiredSolvers = [LivenessSolver]

def interpret(self, insn):
self.use = set()
self.def = set()
# Code to "interpret" insn not shown
# (it populates self.use and self.def)
. . .
self._analysis.resultState.liveness.removeLive(self.def)
self._analysis.resultState.liveness.addLive(self.use)

class LivenessInterpreter2(BaseInterpreter):
_stateInterfaces = [’addLive’, ’removeLive’]

def interpret(self, insn):
self.use = set()
self.def = set()
# Code to "interpret" insn not shown
# (it populates self.use and self.def)
. . .
self._analysis.resultState.removeLive(self.def)
self._analysis.resultState.addLive(self.use)



Chapter 5. The RTL-Check Static Analysis Framework 44

Table 5.4: Analysis class for the liveness of registers.

class LivenessAnalysis(MonotoneAnalysis):
_requiredInterpreters = [LivenessInterpreter]
_requiredSolvers = [LivenessSolver]

def __init__(self, **args):
MonotoneAnalysis.__init__(self, **args)
func = args[’function’]
self.flow = ReverseFlow(func)
# For liveness analysis, the extremal value
# is the least element
self.extremalValue = self.newState()

def liveBefore(self, insn):
# The flow is reversed
# before the instruction is after interpretation
return iter(self.after(insn).liveness)

(_requiredInterpreters);

• The flow and extremal instructions of the function to analyze, which are encap-
sulated in a single class (self.flow);

• The extremal value (self.extremalValue).

The framework provides two basic flow classes that can be used for monotone
analyses, StraightFlow for forward analyses and ReverseFlow for backward analy-
ses. Both of them need the function to analyze as parameter to their constructor.
The flow object must be stored by the analysis in self.flow and the extremal value
in self.extremalValue. There is no need to provide an analyze() method because
MonotoneAnalysis has it already. Table 5.4 shows the class that completes the imple-
mentation of liveness analysis for registers.
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5.2.2 Abstract Interpretation

Abstract interpretation is a very general framework in which analyses are calculated. It
does not mandate the use of a given algorithm. Instead, new analyses are created from
the specification of existing analyses. Since it is possible to specify an analysis that is
very precise but uncomputable, the goal of abstract interpretation is often to create an
analysis that is computable, i.e., one that will not run forever. Other frequent uses of
abstract interpretation include creating analyses that terminate in fewer iterations or
that use less memory.

One important aspect of abstract interpretation is that the method for constructing
a new analysis ensures that its correctness follows from the correctness of the original
analysis. Galois connections, for example, are very useful for this purpose. However, the
RTL-Check framework does not know about the correctness of an analysis and it offers
no support for calculating analyses. These tasks must be done manually. Nevertheless,
the RTL-Check framework offers some support for implementing analyses created using
abstract interpretation.

Widening and Narrowing

A concept often used in abstract interpretation is that of widening operators. A widen-
ing operator can turn any ascending chain, which may increase infinitely, into an as-
cending chain that eventually stabilizes. First we define:

l5n =

{
ln if n = 0

l5n−1 5 ln if n > 0.

The operator 5 : L × L → L is a widening operator if it respects the following
conditions:

• a v a5 b w b, i.e., 5 is an upper bound operator;

• Given any ascending chain (ln)n∈N, the ascending chain (l5n )n∈N eventually stabi-
lizes, i.e., ∃m : l50 v l51 v · · · v l5m = l5m+1 = · · ·.

Note that (l5n )n∈N is an ascending chain because5 is an upper bound operator. Also
note that 5 does not have to be commutative and monotone, and usually it should not
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Table 5.5: Example of a widening operator.
Consider an analysis that computes the greatest possible value of a variable. The
property space could be the complete lattice (Z ∪ {−∞, +∞},v), where

a v b =





a ≤ b if a, b ∈ Z
true if a = −∞ or b = +∞
false otherwise.

We can define the following simple widening operator on this property space:

a5 b =





a if b v a

b if a = −∞
+∞ otherwise.

This operator is not commutative because 1 5 2 = +∞ and 2 5 1 = 2; the left
operand can be seen as the “old” value, i.e., the result of the last iteration of the
analysis. Also, it is not monotone in its left operand because it would mean that

a v b ⇒ a5 c v b5 c.

For a = 1, b = 3 and c = 2, we have 15 2 = +∞ and 35 2 = 3; we observe that
+∞ 6v 3.

be; see Table 5.5 for an example. Since (l5n )n∈N is guaranteed to eventually stabilize,
the widening operator can be used to perform an analysis on a property space that does
not satisfy the ascending chain condition.

A related concept is that of narrowing, which makes it possible to recover some of
the precision lost by the use of a widening operator and still make sure that the analysis
will not iterate forever. Narrowing is not the dual of widening. See [NNH99] for the
definition of narrowing.

In the RTL-Check framework, each solver can define its widening and narrowing
operators by implementing the following methods, which are optional.

• widen(self, old, newState): This method must return a new instance of the
solver that is the result of the widening between self and old.

• narrow(self, old, newState): This method must return a new instance of the
solver that is the result of the narrowing between self and old.
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The RTL-Check framework provides two methods for widening and narrowing in
the abstract state class.

• widen(self, old): This method returns a new abstract state in which each
solver that implements widen() is created by calling this method, and each solver
that does not implement it is a copy of the solver self, i.e., there is no widening.

• narrow(self, old): This method returns a new abstract state in which each
solver that implements narrow() is created by calling this method, and each
solver that does not implement it is a copy of the solver self, i.e., there is no
narrowing.

Combining Analyses

Another approach used to create new analyses with abstract interpretation is the com-
bination of two or more existing analyses. Sometimes the precision of the result can
be improved when there is some overlap between the property spaces of the analyses.
Other times, the goal is just to perform two or more independent analyses in parallel.

The RTL-Check framework is particularly well suited for the combination of anal-
yses. We have seen in Section 5.1.5 how to indicate to the framework the solvers that
must be part of the abstract state. These solvers can receive their data from the same
interpreter or from different modules. If two analyses use the same algorithm, e.g. the
one from MonotoneAnalysis, the only thing needed to perform a parallel analysis is to
add the solvers and the interpreters of one of them to the list of dependencies of the
other.

If the algorithms are not exactly the same, they must be adapted. Of course there
must be some similarity in the algorithms for this to be possible, but it is often the
case.

When the goal is to improve precision, it is usually not enough to run two indepen-
dent analyses in parallel. In this case, it might be more appropriate to have a solver
that depends on one or more other solvers. It can then combine its own information
with the information from other solvers to give a more precise result.



Chapter 5. The RTL-Check Static Analysis Framework 48

5.2.3 General Considerations

It is possible to use the RTL-Check framework to design analyses that are neither a
monotone framework nor the result of abstract interpretation. In this section, we will
see the possible impacts of changing some aspects that are requirements for monotone
frameworks and abstract interpretation.

Complete Lattices

A central concept of both monotone frameworks and abstract interpretation is that the
property space is a complete lattice, or at least a join-semilattice with a unit element,
which corresponds to the least element of a complete lattice. It is natural to define
such a property space even if the RTL-Check framework does not mandate it. Being a
join-semilattice ensures that any two elements have a least upper bound, which means
that it is possible to combine information from two program paths safely. The unit (or
least) element is useful when no information is available yet for a program point. It
allows using a general algorithm that does not have to keep track explicitly of which
program paths have been analyzed or not. It is also useful that all solvers create this
least element by default, to allow algorithms to be independent of the solvers they work
with.

The method join() of solvers should be associative, commutative and idempotent,
otherwise this method would not implement the least upper bound operator, and thus
an analysis that uses it will probably be less precise or unreliable. Associativity and
commutativity also ensure that information from different paths can be combined in
any order without affecting the result of the analysis.

The method isMoreInformative() of a solver should describe the relation “is at
least as informative as”. Since the goal of an analysis is usually not only to find a correct
result, but the most informative one, doing so will be much more difficult without a way
to accurately compare results. Moreover, the implementation of isMoreInformative()
should be consistent with that of join(), i.e., at the very least the following properties
should hold for all a and b to represent the fact that we cannot gain information by
merging that of two paths:

a.isMoreInformative(a.join(b)) == True and
b.isMoreInformative(a.join(b)) == True.
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For the case where join() is the least upper bound operator, we have

a.isMoreInformative(b) if and only if a.join(b) equals b.

Monotone Functions

The use of monotone functions for transfer functions is also natural in program analysis.
In the context of static analysis, the formula a v b ⇒ f(a) v f(b) means that if we
have more information about the input of an instruction, we cannot get less information
about its output. Using monotone functions also ensures that the transfer functions
have a least fixed point and that it is possible to reach it in a finite number of iterations
under certain circumstances, see Termination and Correctness below. The least fixed
point is important because it represents the best possible solution to an analysis.

Termination and Correctness

When designing an analysis, it is important to make sure that it will not run forever.
In monotone frameworks, the use of complete lattices that satisfy the ascending chain
condition and monotone transfer functions ensures termination. In abstract interpre-
tation, when using widening and narrowing operators, we are not sure to reach a fixed
point of the transfer functions, let alone the least one. However, we are sure that the
analysis will end, even though it might not give the best possible result.

When creating an analysis in RTL-Check, if the property space is not a complete
lattice that satisfies the ascending chain condition and there is no widening, or if the
transfer functions are not monotone, there should still be something that ensures it will
eventually terminate.

In fact the analysis should not only terminate, it should be correct with respect to
the semantics of the program. Proving that might turn out to be difficult if the analysis
deviates too much from established results.



Chapter 6

The Memory Access Analysis

This chapter describes the memory access analysis which is built using the RTL-Check
framework and distributed with it1. Its goal is to detect memory access errors in
programs. This analysis is rather complex, it uses two interpreters, many solvers and
many policies in addition to the liveness analysis described in Section 5.2.1. This
analysis is not interprocedural and it does not support function calls yet.

6.1 Description of the Analysis

Figure 6.1 shows the dependencies (dashed arrows) between the classes that make up
the memory access analysis. Some of them, which have no dependency, appear many
times to prevent arrows from crossing. Also, two policies, AbstractVariablePolicy
and SafeMemoryVariablePolicy, have been grouped to make the diagram clearer. The
former depends on the latter, but in practice, they complete each other.

The different solvers of this analysis record information about the program state.
The main interpreter and SafeMemoryVariablePolicy use this information to detect
possible memory access errors. When such an error is detected, it is logged using
ErrorLogPolicy. The list of errors is shown to the user at the end of the analysis.
The following sections describe the modules in more details and they explain the most
important relations between them.

1 The RTL-Check home page is at http://rtlcheck.sourceforge.net/ and its current version
is 0.1.7 as of this writing.

http://rtlcheck.sourceforge.net/
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LivenessInterpreter
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LinearSolver
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PointerSolver
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ErrorLogPolicy

Interpreter

MemoryAnalysis
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Figure 6.1: Overview of the memory access analysis.
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6.1.1 The Main Interpreter

The main interpreter is implemented as an RTL visitor, a design pattern described in
Section 7.3. Its interpret() method takes a pair of instructions, instead of only one as
discussed previously. The first one is the instruction to interpret and the second one is
the following instruction. Because of this, conditional jumps must be interpreted twice
but the interpreter knows the outcome of the test, which can improve precision. It is
the class EdgeFlow (instead of StraightFlow) that provides this kind of flow.

The main interpreter uses two methods to modify resultState when it inter-
prets an instruction. The first one is setValue(self, value, expression). The
parameter value will be an abstract variable, i.e., an instance of a class that inherits
from AbstractVariable, which is defined in value.py. When the interpreter calls
setValue(), it means that this abstract variable, which represents a register or a mem-
ory word, gets a new value. The parameter expression represents this new value. It is
an abstract variable expression, which can be an instance of one of the following classes.

• UnknownValue: It is used when a value is unknown. It can be the result of an
operation that is not implemented precisely enough by the interpreter or a solver,
but it can also be because value could be an alias to another value that was just
modified. The interpreter also uses it in some cases when value is dead, i.e.,
value will not be used again later in the program before being assigned again.
For some solvers, “forgetting” a value can save both memory and execution time.

• Integer: It is used when an exact integer value is known.

• AbstractVariable: It is used to represent a value that is unknown to the inter-
preter, but that could be referred from elsewhere in the program. An abstract
variable has not necessarily been assigned a value by the interpreter before it is
used in an abstract variable expression.

• BinaryOp (Plus, Minus, Times): They are used when a value can be described by
two other abstract variable expressions, which are combined using an arithmetic
operation.

• AbstractAddress: It is used to describe a value that represents a memory address.
An AbstractAddress is composed of a zone (an abstract memory area) and an
offset, which itself is an abstract variable expression, i.e., it may not be known
precisely.
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Different zones are considered distinct and non-overlapping. However, a single zone
might represent more than one concrete memory area at the same time. Each zone has
three zone attributes that describe it. For the different solvers that do not treat them
in a special way, a zone attribute is just another kind of AbstractVariable. The zone
attributes are the following.

• NumInstances: It represents the number of distinct concrete memory areas rep-
resented by the zone.

• StartOffset: It represents the offset at which the zone starts. It can be positive
or negative. A memory access to the zone at an offset less than this offset is
wrong.

• EndOffset: It represents the offset at which the zone ends. It can be positive or
negative. A memory access to the zone at an offset greater than or equal to this
offset is wrong.

All of these classes are defined in value.py.

The second method that the interpreter uses to modify resultState is
addConstr(self, constr). When it calls this method, it means that the abstract
variable constraint constr is satisfied at this point in the analysis. This parameter is
an instance of one of the following classes, which all inherit from BinaryComp. Each of
them has two attributes, left and right, which are abstract variable expressions.

• Equal: It means that left is equal to right.

• NotEqual: It means that left is not equal to right.

• LessThan: It means that left is less than right.

• LessThanEqual: It means that left is less than or equal to right.

• GreaterThan: It means that left is greater than right.

• GreaterThanEqual: It means that left is greater than or equal to right.

To do its work, this interpreter relies mainly on AbstractVariablePolicy and
SafeMemoryVariablePolicy.
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The first policy, AbstractVariablePolicy, is used by the interpreter to convert
RTL code and zone attributes to abstract variables and abstract variable expressions.
The second policy, SafeMemoryVariablePolicy, is used to get the list of possible aliases
of an abstract variable that represents a memory word when it is modified. These
policies will be described in Sections 6.1.7 and 6.1.8 respectively.

This interpreter does not understand all RTL expressions, but it knows enough
to analyze many procedures. If it encounters an unknown expression, it prints an
informative message and aborts.

The main RTL instruction that is handled by this interpreter is Set. It is used for
both assignments and jumps. For simple jumps, the interpreter does nothing because no
register or memory is modified. For a conditional jump, nothing changes, but we gain
information because the interpreter knows if the jump is taken or not, and thus whether
the condition is true or false. Thus it uses AbstractVariablePolicy to convert the
RTL expression of the condition into constr, an abstract variable constraint. It then
calls resultState.addConstr(constr).

For assignments, it uses AbstractVariablePolicy to transform both the source
and the destination RTL expressions into abstract variable expressions src and dst
respectively, and it calls resultState.setValue(dst, src). If the destination is in
memory (i.e., not a register) it also calls resultState.setValue(a, UnknownValue())
for each alias a of dst according to SafeMemoryVariablePolicy.

It is not possible to tell whether the transfer functions implemented by this inter-
preter are monotone with only the description above, because it depends much on the
definition of setValue() and addConstr() of each solver. These methods must be
monotone in self for the whole abstract state, not only internally.

Also, since the list of aliases known by SafeMemoryVariablePolicy can grow during
the analysis, the transfer functions do not depend only on the abstract state, but also
on this policy. This means that transfer functions could give a less informative result
for a second call with the same abstract state. It would mean that the functions
are not monotone, but this case cannot happen in the current analysis because, if
SafeMemoryVariablePolicy does not know about an alias, it also means that no solver
has seen this alias yet, and thus no solver can have any information about it.
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6.1.2 The Impossible Solver

ImpossibleSolver is a very simple solver defined in impossible.py, which only keeps
track of whether or not it is possible to reach a given point of the program. It is used
by some solvers that keep constraints on abstract variables to represent their “most
precise” state. For these solvers, an impossible state can be interpreted as a state
where all possible constraints are respected at the same time, including those that are
contradictory. This is obviously not possible for any given execution of any program.
Since an abstract state becomes more precise when constraints are added, it is easy to
understand why the impossible state is the most precise state.

ImpossibleSolver does not implement the method setValue(), it only implements
addConstr(self, constr). It ignores every constraint it sees, except those that are
instances of Impossible or one of its derived classes declared in constraint.py. In this
case, it makes the constraint accessible by its get-property impossible because it could
be useful for some other part of the analysis to know why some code is unreachable.
The memory access analysis however does not use it currently.

Impossible constraints are not generated by the interpreter directly, they are gen-
erated by other solvers when they detect that two constraints cannot be satisfied at the
same time.

ImpossibleSolver follows the rule that, by default, a solver is created in its most
precise state. It means that other solvers using this one to represent their most pre-
cise state also follow this rule automatically. To create an abstract state that is not
impossible, one must pass the optional parameter bottom=False.

Another advantage of using this solver is that a solver can optimize some of its op-
erations when an abstract state is determined to be impossible. Yet another advantage
is that when a new solver that reports constraints that cannot be satisfied is added to
an analysis, all existing solvers using ImpossibleSolver become more precise because
they share information with the new solver, even if they do not know its existence.

The definition of copy() for this solver is trivial. The method join() returns
an impossible solver only when both self and other are impossible. The method
isMoreInformative() returns False only if other is impossible and self is not, oth-
erwise it returns True.
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6.1.3 The Linear Constraints Solver

LinearSolver is inspired by the description of ARCHER [XCE03]. It is implemented
in linear.py. It keeps information about the integer value of each abstract variable
and linear relations between them. More precisely, for each abstract variable that is
not known to be constant, this solver keeps the following information:

• An integer lower bound;

• An integer upper bound;

• A list of integers that cannot be equal to the abstract variable;

• A list of linear derivations that are lower bounds for the abstract variable;

• A list of linear derivations that are upper bounds for the abstract variable;

• A list of linear derivations that cannot be equal to the abstract variable.

Here, a linear derivation is an expression that has the form (a · α + b)/c, where a,
b and c are integers (with c 6= 0) and α is a solver symbol. A solver symbol represents
an unknown value, but it is useful for expressing relations between abstract variables.

For efficiency and precision, the information enumerated above is not kept for each
abstract variable individually, but only for solver symbols. Thus, abstract variables are
associated to either an integer value or a linear derivation. One advantage of this ap-
proach is that when an abstract variable is assigned a new value that can be transformed
into a linear derivation, there is no need to copy the information about upper bounds,
lower bounds and values that are not equal. This information can all be retrieved when
needed by following the chain of linear derivations between symbols, which are indexed
in both ways. But the main advantage is that if a constraint that improves the lower or
upper bound of an abstract variable is added later, all other abstract variables that de-
rive directly or indirectly from the same symbol as this abstract variable automatically
get improved bounds at the same time.

To implement this behavior, this solver tries to transform abstract variable expres-
sions received by both setValue() and addConstr() into linear derivations with the
following rules, which are defined in a value visitor (see Section 7.3):

• a 7→ Integer(i) (if a ∈ AbstractVariable and the solver knows a equals i);
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• a 7→ l (if a ∈ AbstractVariable and the solver knows a equals l ∈
LinearDerivation);

• a 7→ l (if a ∈ AbstractVariable and the solver does not know about a; l is a
linear derivation of a fresh symbol);

• Plus(i, j) 7→ i + j (if i, j ∈ Integer);

• Plus(i, l) 7→ i + l (if i ∈ Integer and l ∈ LinearDerivation);

• Plus(l, i) 7→ l + i (if i ∈ Integer and l ∈ LinearDerivation);

• Minus(i, j) 7→ i− j (if i, j ∈ Integer);

• Minus(i, l) 7→ i− l (if i ∈ Integer and l ∈ LinearDerivation);

• Minus(l, i) 7→ l − i (if i ∈ Integer and l ∈ LinearDerivation);

• Times(i, j) 7→ i · j (if i, j ∈ Integer);

• Times(i, l) 7→ i · l (if i ∈ Integer and l ∈ LinearDerivation);

• Times(l, i) 7→ l · i (if i ∈ Integer and l ∈ LinearDerivation).

Note that it is trivial to define operators +, − and · between integers and linear
derivations. For example,

Integer(x) · LinearDerivation((a · α + b)/c)

= LinearDerivation((a · x · α + b · x)/c).

The operator / can also be defined precisely when the first operand is a linear derivation
and the second one is an integer different from 0. Also note that the result of these
operations on two linear derivations is not a linear derivation in general. For example,
LinearDerivation(α1) + LinearDerivation(α2) is not a linear derivation.

When the transformation succeeds, its result is either an integer or a linear deriva-
tion. In the case of setValue(), the result is assigned directly to the abstract variable
and the old information is lost. For addConstr(), constraints of the type LessThan
and GreaterThan are first converted to LessThanEqual and GreaterThanEqual respec-
tively by adding one to the “b” of the smallest linear derivation. For these cases, there
are four possibilities, but three of them are handled about the same way.

• If both left and right are integers, we verify that the constraint is an arithmetic
fact. If it is not, we call addConstr() on the abstract state to indicate that we
are in an impossible state.
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• If at least one of left and right is a linear derivation, we use the following
procedure.

– Without loss of generality, we will assume that left = LinearDerivation((a·
α + b)/c).

– We first normalize the constraint to have the form: left′ = α and right′ =
(right ∗ c− b)/a.

– The constraint must be reversed if a∗c is negative, e.g. LessThanEqual(left,
right) becomes GreaterThanEqual(left′, right′).

– The division used to compute right′ is exact if right is a linear derivation,
but it cannot be if it is an integer. In this case, it must be the “floor division”
if the final constraint is of the form LessThanEqual(left′, right′) and
the “ceiling division” for the form GreaterThanEqual(left′, right′). If
another division was used, the result would be less precise.

– When the constraint is in its final form, it is added to the internal state of
the solver for the symbol α.

– If right′ is a linear derivation, its upper or lower integer bound is also taken
into account for left′. If right′ is an integer, this bound is propagated to
all symbols that can be linked to right′ through existing linear derivations.
This ensures that the lower and upper bounds of each symbol are always
up-to-date in the solver.

If the type of the constraint is Equal, it is treated as both LessThanEqual and
GreaterThanEqual. If it is of type NotEqual, it is almost like the case of LessThanEqual
or GreaterThanEqual, except that if the remainder of the division is not zero, we do
not gain any information because symbols represent integer values.

If the transformation fails for setValue(), the solver deletes all the information it
has about the abstract variable that is being assigned. If it fails for either abstract
variable expression of addConstr(), it ignores the constraint.

The fact that abstract variables and symbols represent integers allows this solver to
deduce information that is not always obvious at first sight. For example, assume it
receives the following information:

setValue(b, Times(a, 10)),
addConstr(GreaterThan(b, -10)),
addConstr(LessThan(b, 10)).
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From this, the solver can correctly deduce that both abstract variables a and b are
equal to 0. Another example is

setValue(b, Times(a, 5)),
addConstr(Equal(b, 4)).

In this case, the solver correctly deduces that it is impossible, which means that the
path being analyzed cannot be executed.

The implementation of copy() for this solver is straightforward, but join() and
isMoreInformative() are less obvious. Nevertheless, they share a lot.

The method join(self, other) first uses ImpossibleSolver to check if self is
impossible and it returns a copy of other in this case. Likewise, it returns a copy of
self if other is impossible. Otherwise, for each abstract variable that is present in
both solvers, the set of constraints of which it is part is computed in both solvers using
the graph of linear derivations. The intersection of these sets is added to a new solver,
which is returned when the method ends. This defines an upper bound operator, but
not the least upper bound. Thus, there is room for improvement in this implementation.

The method isMoreInformative(self, other) also checks if self is impossible
by using ImpossibleSolver and returns True in this case. If other is impossible,
it returns False. Otherwise, for each abstract variable from other, the set of all
constraints of which it is part is computed using the graph of linear derivations. False
is returned if one of these constraints is not satisfied in self. True is returned otherwise.

This solver also offers many other methods to query its state. They allow, among
other things, checking whether a constraint is known to be satisfied by the solver,
determining whether an abstract variable is constant, its lower bound and its upper
bound.

This solver does not satisfy the ascending chain condition. For example, we can
build an infinite chain of more informative constraints: a > 0, a > 1, a > 2, . . . However
this solver has a useful, but incomplete, implementation of widening, as discussed in
Section 6.1.11.
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6.1.4 The Modulo Constraints Solver

ModuloSolver is defined in modulo.py and it tracks the remainder of the division by
a given divisor for each abstract variable. It is useful to know the remainder of the
division in addition to the lower and upper bounds of an abstract variable to gain
precision when some code deals with an array or a structure. For example, if we can
determine that the remainder of the division by 8 of the offset of a memory access is 0,
and the remainder of the division by 8 of another memory access is 4, we are sure that
the two abstract variables representing these memory accesses cannot be aliases.

To do its work, this solver uses a class named Congruence. To create an instance,
this class uses two parameters, mod and rem, the latter being 0 by default. An instance
of this class represents the subset of the integers {x ∈ Z|x ≡ rem (mod mod)}. We
use mod == 0 to represent the empty set and mod == 1 to represent Z.

Defining v on Congruence is natural; it corresponds to the subset operator ⊆ on
the set of integers represented by the congruence. Note that, with this partial ordering,
Congruence can be seen as a complete lattice2.

Congruence has many methods, which are the following.

• join(self, other): The binary least upper bound operator. This method re-
turns a Congruence that represents all integers that are represented by either
self or other. It also works if other is an Integer. This operation is not pre-
cise, which means that the resulting Congruence might represent some integers
that were represented by neither self nor other.

• meet(self, other): The binary greatest lower bound operator. It returns a
Congruence that represents only integers that are represented by both self and
other. This operation is precise, which means that the resulting Congruence
represents exactly the integers that are represented by both self and other. It
also works if other is an Integer in which case it may also return an Integer.

• __neg__(self): Abstract negation. It returns a Congruence that represents the
integers which are the negation of an integer represented by self. This operation
is precise.

• __add__(self, other): Abstract addition. It returns a Congruence that rep-
resents all the integers which are the sum of an integer represented by self and

2In the rest of the text, we will use the concept of class and that of mathematical structure inter-
changeably when appropriate. For example, we can say that Congruence is a complete lattice.
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an integer represented by other. This operation is not precise. It also works if
other is an integer, in which case it is precise.

• __mul__(self, other): Abstract multiplication. It returns a Congruence that
represents all the integers which are the product of an integer represented by self
and an integer represented by other. This operation is not precise. It also works
if other is an integer, in which case it is precise.

• __contains__(self, i): It returns whether self represents the integer i.

• isCongruent(self, other): It returns whether self represents a subset of the
integers represented by other. It is the operator v discussed above. It also works
if other is an Integer.

• isDisjoint(self, other): It returns whether there exists no integer repre-
sented by both self and other.

• isNothing(self): It returns whether self represents no integer.

• isAnything(self): It returns whether self represents all integers.

• after(self, i): It returns the least integer represented by self that is greater
that integer i.

• before(self, i): It returns the greatest integer represented by self that is less
that integer i.

ModuloSolver keeps a Congruence for each abstract variable it knows. It receives
its information from setValue() and addConstr(). Much like LinearSolver does
for linear derivations, this solver tries to transform abstract variable expressions into
congruences. For this purpose, it uses the following rules, defined in a value visitor that
uses LinearSolver to improve precision when a constant integer value is known:

• a 7→ Integer(i) (if a ∈ AbstractVariable and the LinearSolver knows a equals
i);

• a 7→ c (if a ∈ AbstractVariable and this solver knows a is represented by
c ∈ Congruence);

• Plus(i, j) 7→ i + j (if i, j ∈ Integer ∪ Congruence; addition is defined by the
method __add__ described above);

• Minus(i, j) 7→ i + (−j) (if i, j ∈ Integer ∪ Congruence; addition and negation
are defined by the methods __add__ and __neg__ described above);
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• Times(i, j) 7→ i · j (if i, j ∈ Integer ∪ Congruence; multiplication is defined by
the method __mul__ described above);

• x 7→ c (if x is something else; c is the Congruence that represents all integers).

Because of the last rule, this transformation cannot fail and it always results in
a Congruence or an Integer. For setValue(av, x), if the transformation of the
expression x results in a Congruence, the solver uses it directly as the new value of
the abstract variable av. If it is an Integer, information about av is cleared from the
solver. This is not a loss of information because LinearSolver still knows that av is
constant.

For addConstr(), the solver ignores all constraints except those of type Equal. In
this case, if the transformation of at least one of the expressions (left-hand side and
right-hand side of the constraint) result in a Congruence, it calls meet() between both
of them. If this last result is a Congruence that represents the empty set, addConstr()
is called on the abstract state to indicate that we are in an impossible state. If it is
another Congruence, and the left side is an abstract variable, it is assigned the result
of meet(). Similarly, if the right side is an abstract variable, it is assigned the result of
meet().

Here is an example of a situation that this solver can determine to be impossible,
whereas LinearSolver cannot:

setValue(b, Times(a, 16)),
setValue(d, Times(c, 8)),
addConstr(Equal(d, Plus(b, 4))).

The implementation of copy() for this solver is straightforward. The methods
join() and isMoreInformative() are also pretty simple. They first check if an ab-
stract state is impossible, like LinearSolver. Then they iterate over all abstract vari-
ables and use the methods join() and isCongruent() of Congruence to compute their
result.

This solver satisfies the ascending chain condition because given a Congruence,
strictly less precise constraints can only be created by removing a factor from the
modulo, and there is a finite number of factors for any given integer. Thus, this solver
does not need widening.
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6.1.5 The Pointer Solver

PointerSolver is defined in pointer.py and it tracks the relations between abstract
variables and abstract addresses. To do this, it associates an abstract address to every
abstract variable it knows. Much like LinearSolver and ModuloSolver, this solver
receives its information from calls to setValue() and addConstr() and it uses simple
rules, implemented in a value visitor, to transform abstract variable expressions into
abstract addresses. They are:

• v 7→ a (if v ∈ AbstractVariable and this solver knows v equals a ∈
AbstractAddress);

• v 7→ i (if v ∈ AbstractVariable and the LinearSolver knows v equals i ∈
Integer);

• Plus(AbstractAddress(z, o), v) 7→ AbstractAddress(z, Plus(o, v));

• Plus(v, AbstractAddress(z, o)) 7→ AbstractAddress(z, Plus(o, v));

• Minus(AbstractAddress(z, o), AbstractAddress(z, p)) 7→ Minus(o, p)) (if there
is only one instance of z);

• Minus(AbstractAddress(z, o), v) 7→ AbstractAddress(z, Minus(o, v)).

After transformation, if the result is an abstract address, it can be used by this
solver. For calls to setValue(av, x), the goal is to associate the abstract address to
av. For calls of the form addConstr(Equal(av, x)) or addConstr(Equal(x, av)),
the goal is the same except that if there is an existing association for av, the new one
is ignored. Other calls to addConstr() with other kinds of constraints are ignored.

Unlike LinearSolver and ModuloSolver, this solver does not transform all abstract
variables. This means that the offset of an AbstractAddress can still be an abstract
variable that is not a constant. One more transformation rule is applied to ensure that
this solver will always remember the right abstract address, even if the abstract variable
is changed by a subsequent instruction:

• v 7→ f (if v ∈ AbstractVariable; f ∈ AbstractVariable is the fixed value for v

at the current instruction according to FixedValuePolicy (see Section 6.1.9)).
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After this last transformation, the association between av and the abstract address
can be saved. FixedValuePolicy does not attempt to modify any state to reflect the
fact that an abstract variable and its corresponding fixed value are equal. It is this
solver that calls setValue(f, v) on the resultState to indicate that when it uses a
fixed value.

The definition of copy() for this solver is straightforward. The methods join()
and isMoreInformative() are much less obvious, and they are currently incomplete.
In both cases, the analysis is aborted if two addresses with a nonconstant offset must
be compared. A complete implementation would use SafeMemoryVariablePolicy to
check whether a pointer may point to a subset of the addresses that may be pointed to
by the other.

This solver, by itself, does not satisfy the ascending chain condition. However,
the current version does not need widening because of the imprecision in join() and
isMoreInformative(). When these methods will be more precise, there will probably
be no need for widening either because:

• A strictly less precise state (for an ascending chain) means that an abstract vari-
able may point to more addresses;

• Each abstract variable is associated to at most one abstract address;

• An abstract address points to only one zone;

• An abstract address has an offset that is represented by only one abstract variable
expression;

• The constraints placed on an abstract variable expression are kept by the solvers
LinearSolver and ModuloSolver;

• LinearSolver implements widening;

• ModuloSolver satisfies the ascending chain condition.

Thus, as long as the memory model implemented by this solver and the policies
described in Sections 6.1.7 and 6.1.8 remain as restrictive, there should not be any need
for widening in this solver. The memory model was inspired by Alias Types [SWM00],
which is an extension of TAL [MCGW02]. There are, however, many important dif-
ferences. What is called a location in the first article corresponds sometimes to a
MemoryVariable, and sometimes to a Zone in this analysis. In the article, pointers
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Table 6.1: Conditional jump in RTL.

(set (reg 17)
(compare (reg 60)

(mem (reg 59))))

(set (pc)
(if_then_else (lt (reg 17) (const_int 0))

(label_ref 20)
(pc)))

are to a location, and in this analysis they are to a Zone and an offset. This makes it
possible to support pointer arithmetic. The article talks about nonlinear constraints,
which correspond to constraints on Zone that have NumInstances > 1. This solver
provides no support for option types, which are possibly NULL pointers. There is also
currently no support in the analysis for allocating and freeing memory.

6.1.6 The Comparison Solver

ComparisonSolver is defined in comparison.py. To understand the usefulness of this
solver, it is necessary to look at how conditional jumps are represented in RTL. Table 6.1
shows one. There are two instructions. The first one compares the content of register 60
to that of the memory word pointed to by register 59. The comparison is in fact a
subtraction. The result is stored in register 17, which is a “flag” register. The second
instruction is the conditional jump and pc stands for the current instruction pointer.
It means that if the content of register 17 is less than 0, the program jumps to the
instruction after label 20, otherwise it continues at the next instruction.

The effect of these two instructions is that the jump is taken if and only if the
content of register 60 is less than that of the memory word pointed to by register 59.
This condition can be expressed by LessThan(avr60, avm59), where avr60 and avm59
are abstract variables for register 60 and the memory word pointed to by register 60
respectively. This constraint would be understood correctly by LinearSolver.

The problem is that LinearSolver cannot understand the call setValue(avr17,
Minus(avr60, avm59)) that is generated for the first instruction, except in the rare
case where avr60 or avm59 is known to be constant. This is because it only understands
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linear relations between two abstract variables, and there are three in this case. Thus,
when the second instruction is interpreted, LinearSolver does not know the relation
between register 17 and the two other abstract variables, and thus it cannot deduce that
LessThan(avr60, avm59) when the jump is taken, and that GreaterThanEqual(avr60,
avm59) when it is not.

ComparisonSolver tries to improve the situation by keeping information about the
last call of the form setValue(av, Minus(v1, v2)). It clears its state for any other
call to setValue(). Then, if there is a call of the form addConstr(Comparator(av,
0)), this solver calls addConstr(Comparator(v1, v2)). Here, Comparator can be any
class that inherits from BinaryComp.

Since the two instructions that this solver targets to improve the precision of condi-
tional jumps are always next to each other and there is never another instruction that
jumps directly to the second one, the implementation of isMoreInformative() and
join() does not have to be very precise. The method isMoreInformative() can re-
turn False for all nontrivial cases, and join() can return a solver with no information
for these cases. The method copy() is simple, as usual.

This solver satisfies the ascending chain condition because it only keeps information
about one abstract variable at a time, and isMoreInformative() is not precise enough
to tell whether an abstract variable expression is more informative than another.

6.1.7 The Abstract Variable Policy

AbstractVariablePolicy is implemented in abstractvariable.py. It exists mainly
to create abstract variable expressions from other representations of values, namely
RTL expressions and concrete variable expressions. Abstract variable expressions have
already been described in Section 6.1.1 and RTL expressions were described in Sec-
tions 3.2 and 4.1. Concrete variable expressions are an intermediate state between
RTL expressions and abstract variable expressions. They are much like abstract vari-
able expressions, except that abstract variables can be replaced by one of these classes:

• Register;

• ZoneSlice;

• ZoneAttr (StartOffset, EndOffset and NumInstances).
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A Register is described by its register number, a ZoneAttr is described by its type
(StartOffset, EndOffset or NumInstances) and a zone, and a ZoneSlice is described
by a zone, an offset and a length.

Concrete variable expressions form an intermediate representation that has many
uses. The first one is to make it possible for an analysis to express constraints (e.g.
for preconditions) in a language similar to that of abstract variable expressions, The
language of abstract variable expressions is not appropriate because it lacks a way
to describe registers and memory accesses. The language of RTL expressions is not
appropriate either because it is too different and it lacks the concept of memory zone.
Concrete variable expressions allow doing this all at once.

The second use is for debugging. Since abstract variables are not meaningful by
themselves, they must often be converted to a more human-readable representation
during debugging. Concrete variable expressions are well suited for this purpose and
this policy provides a method to convert abstract variable expressions back to concrete
variable expressions.

AbstractVariablePolicy implements five public methods. The first of them is
named abstractVariableExpr() and it converts a concrete variable expression to an
abstract variable expression. It uses these simple rules:

• r 7→ v (if r ∈ Register; v ∈ RegisterVariable represents r);

• a 7→ v (if a ∈ ZA and ZA inherits from ZoneAttr; v ∈ ZoneVariable represents
a);

• s 7→ v (if s ∈ ZoneSlice; v ∈ MemoryVariable represents s according to
SafeMemoryVariablePolicy).

Here, RegisterVariable, ZoneVariable and MemoryVariable are all classes that
inherit from AbstractVariable. Compared to instances of Register, ZoneAttr and
ZoneSlice, which are concrete variables, abstract variables have the advantage that
they are easier to compare and index for the solvers.

For the first two rules, this policy creates an association between the concrete vari-
able and a new abstract variable if the concrete variable is seen for the first time. For
the third rule, things are more complicated because there can be aliases and the offset
may not be constant. This is why it resorts to SafeMemoryVariablePolicy, which is
described in the next section.
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The second method, named abstractVariableExprForRtx(), converts RTL ex-
pressions to abstract variable expressions. The RTL expression is first converted to a
concrete variable expression. Much of this conversion is straightforward (e.g. an RTL
register is mapped to a Register, an RTL addition is mapped to Plus...) thus only
the rules that are less obvious are shown here.

• rtl.SymbolRef(s) 7→ AbstractAddress(z, 0) (where z ∈ Zone is the zone for the
symbol s, see zoneForSymbol() below).

• rtl.Ashift(x, y) 7→ Times(x, 2z) (if LinearSolver of currentState knows that
y = z ∈ Integer).

• rtl.Mem(x)l 7→ ZoneSlice(z, o, l) (if a = abstractVariableExpr(x) and a can be
transformed into AbstractAddress(z, o) using the rules described in Section 6.1.5
for PointerSolver, and l is the size of the memory word in bytes).

The first rule means that each static variable or array is represented by its own zone.
The constraints for this zone (start offset, end offset...) must be provided independently.
See Section 6.1.12 for how this is done in this analysis.

The second rule is for “arithmetic shift”, which is exponentiation. When possible, it
is transformed into a multiplication so that solvers have fewer operations to deal with.

The third rule is for pointer indirection and it is by far the most elaborate. Its
implementation requires the use of abstractVariableExpr() (described above) and
code from PointerSolver.

If there is some part of an RTL expression for which no conversion rule applies, this
policy can return an UnknownValue safely, but since it is currently incomplete, it aborts
when it encounters an RTL expression it does not know. This is so that we know which
RTL expression should be supported next to improve the analysis.

The second step in method abstractVariableExprForRtx() is converting the re-
sulting concrete variable into an abstract variable. This is exactly what the method
abstractVariableExpr() does.

The third method of AbstractVariablePolicy is abstractVariableForRtx(). It
does the same thing as abstractVariableExprForRtx(), except that it aborts if the
result is not a simple abstract variable. It is used mainly for debugging.
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The fourth method is zoneForSymbol(). It simply returns the zone that corresponds
to a given (static) symbol. If the symbol is seen for the first time, a new zone is created
and the association is saved. This method can be used for both real symbols that come
from the compiler, and “fake” symbols that represent other memory area. For example,
the fake symbol *locals* can be used to obtain the zone that corresponds to local
variables.

The fifth method is concreteVariableExpr(). It converts an abstract variable
expression back to a more meaningful concrete variable. However, this conversion is
imprecise. For example, a MemoryVariable cannot always be converted back to a
ZoneSlice. It is used only for debugging.

6.1.8 The Safe Memory Variable Policy

SafeMemoryVariablePolicy is implemented in safememoryvariable.py and it de-
fines three methods to deal with memory accesses. The first method is mvForSlice(),
which returns a MemoryVariable for a given ZoneSlice. There are two kinds of
MemoryVariable: PreciseMemoryVariable, which represents memory words at a con-
stant offset in a zone that has a single instance, and ImpreciseMemoryVariable, which
represents memory words when the offset is not known precisely or when there can be
many instances of the zone.

Internally, this policy uses ModuloSolver and LinearSolver of currentState to
discover constraints on the offset of a ZoneSlice. The class SubZone helps putting all
this information together. It takes a lower bound, an upper bound, a congruence and a
length of the memory word. The operations implemented by SubZone are the following.

• isPrecise(): Returns whether the offset is constant.

• isNothing(): Returns whether the SubZone represents no offset at all.

• overlaps(): Returns whether two SubZone overlap at least partly.

• isSubSet(): Returns whether a SubZone represents a subset of another.

• intersections(): Returns an iterator of SubZone that are part of the intersec-
tion between two given SubZone.

Each MemoryVariable is associated with a Zone and a SubZone, and each Zone
has a list of associated MemoryVariable. When a memory variable is requested for a
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ZoneSlice, it is first converted into a SubZone. The list of existing MemoryVariable is
then searched for a SubZone that is a superset of what is requested. If it is found, it is
returned, otherwise an association with a new MemoryVariable is created.

This policy also keeps a mapping of possible aliases between all MemoryVariable.
Thus, when a new MemoryVariable is created, the list of existing SubZone is scanned
and an alias is added for each existing MemoryVariable that overlaps the new one. For
a MemoryVariable in a zone for which NumInstances may be greater than 1, an alias
is also added between the new MemoryVariable and itself. It is important to note that
aliases may overlap only partly, e.g. a word of length 4 at offset 0 partly overlaps a
word of length 4 at offset 2.

The second method is sliceForMV(mv), which returns the ZoneSlice for a given
PreciseMemoryVariable. It is used only for debugging.

The third method is aliasesForMV(), which returns the list of aliases for a given
MemoryVariable. Note that the “aliases” relation is not transitive. For example, with-
out any constraint on x, ZoneSlice(z, x, 4) aliases both ZoneSlice(z, 0, 4) and
ZoneSlice(z, 4, 4), but the latter two are clearly not aliases.

6.1.9 The Fixed Value Policy

FixedValuePolicy is implemented in fixedvalue.py. The goal of this policy is to
allow solvers to keep information about relations between abstract variables at a given
point in the program. In the case of PointerSolver, the offset of a pointer in a zone
is represented by an abstract variable. The problem is that if this abstract variable
changes later, the pointer is not affected. Without FixedValuePolicy, the relation
would no longer represent reality and it would have to be discarded by the solver. This
loss of precision is often unacceptable.

FixedValuePolicy helps this situation by associating a FixedValue (which is an-
other kind of AbstractVariable) to each AbstractVariable at each edge. An asso-
ciation is created only when the method getFixedValueFor() is called for a specific
abstract variable so the overhead is minimal. This policy does not update any abstract
state; it is up to the solver that requests a FixedValue to make sure that this value
exists in the right abstract state.

This policy also defines two other methods that are used for debugging. They
are getAbstractVariableFor() and getEdgeFor() which return, respectively, the ab-
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stract variable and the edge (or “instruction”) at which a FixedValue was created.

Note that the other solvers described for this analysis do not need this policy. In
particular, LinearSolver uses SolverSymbol internally, ModuloSolver does not keep
any relation between abstract variables, and ComparisonSolver discards its state at
every call to setValue(), thus it does not suffer from the problem described above for
PointerSolver. The main interpreter, however, uses it, see Section 6.1.11.

6.1.10 The Error Log Policy

This policy, defined in error.py, provides a method that allows any part of the anal-
ysis to log it when an error is detected in the code being analyzed. This method is
logError() and it takes an instance of a class derived from DetectedError as pa-
rameter. These classes correspond to different kinds of errors. Currently, they are
MemoryAccessError and FunctionCallError.

The main goal of the analysis described here is to detect memory access errors,
and SafeMemoryVariablePolicy logs it when a memory access cannot be determined
to be safe in the current state. All function calls are also logged as errors because
they are ignored by the analysis currently, and thus, there is no way to know if a
function call would produce a memory access error or not. Both the main interpreter
and AbstractVariablePolicy log it when they find function calls.

This policy also provides a method clear() to reset the list of errors and a few
methods to query the list of errors.

6.1.11 Special Cases to Consider

Many details were left out of the description of the analysis up to now to make it easier
to understand. This section discusses the most important of them.

The Interpreter and Imprecise Memory Variables

The main interpreter must be careful when the conversion from an RTL expression to
an abstract variable expression returns an ImpreciseMemoryVariable because such
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a value represents many memory words at once, not the particular memory word
used (or modified) by the current instruction. Because of that, the interpreter uses
FixedValuePolicy and it replaces each imv ∈ ImpreciseMemoryVariable by its cor-
responding fv ∈ FixedValue in the expressions returned by AbstractVariablePolicy.
It also calls setValue(fv, imv) for each of them on currentState and resultState
before the main call to setValue() or addConstr() is executed for the current instruc-
tion.

The Comparison Solver and Extended Liveness Analysis

ComparisonSolver saves an abstract variable expression when it recognizes a compar-
ison that is likely to be used in a conditional jump. Then, when the jump is taken (or
not), the variable expression is transformed into a new expression that is more likely to
be understood by the other solvers.

The problem is that, as an optimization, the interpreter tries to remove from
the state any information about registers that are dead. If a register is kept by
ComparisonSolver at a given instruction and it becomes dead at this point, the new
constraint generated at the following instruction will be useless.

To fix this problem, a new definition of liveness was used. The only difference is
that registers that are used in an instruction that precedes a conditional jump are also
considered live in this conditional jump. This is implemented in an analysis called
ExtendedLivenessAnalysis, which is a slight modification to the liveness analysis
described Section 5.2.1.

Widening of Linear Constraints

LinearSolver implements widening, but it is incomplete. Currently, it only detects
that there is a need for widening on absolute upper and lower bounds of abstract
variables. In this case, it simply removes the bound that could prevent convergence.
It does not detect if there is a need of widening for linear constraints. This should be
fixed in a future version of this analysis.

LinearSolver also employs two techniques to decrease the number of widening
operations, which affect the precision of the analysis. The first case where no widening is
applied is when the result of the abstract interpretation of a new instruction is available



Chapter 6. The Memory Access Analysis 73

at the current instruction for the first time. This tends to decrease the precision of
intermediate result states anyway, and we would prefer if things stabilized by themselves
instead of applying widening. Note that this case can happen only a finite number of
times since there is a finite number of instructions to analyze.

To detect whether the result of a new instruction is available, LinearSolver uses
two very simple modules. AccountedEdgeInterpreter indicates to the solvers which
instruction is being interpreted, and AccountedEdgeSolver saves this information in
the abstract state.

The second case where no widening is applied is when there has been widening
between creation of old (the last time the instruction was interpreted) and that of self
(the result of the current interpretation). The idea is that after a widening operation,
we want to let the result propagate before resorting to one more widening operation
that could be costly in precision.

6.1.12 The Memory Access Analysis

The main analysis class is implemented in memoryanalysis.py. It uses the interpreters,
solvers and policies discussed in the last few sections. The extremal value of this analysis
represents the input that the function will receive when it is called. It is different for
each function because it must describe the pointers and the memory zones that are
used. Among other things, it must describe the pointer and the zone for local variables
of the function and the pointer and the zone for the parameters of the function.

A large part of this information could be extracted from the source code of the
program at the same time as the RTL code, but currently it is not. Instead, the size
of parameters and local variables must be provided in the file datadb.py. It is also
possible to describe the possible values of a parameter or a value in memory, and even
some complex data structures and relations between zones and pointers.

For each instruction (or edge) that is analyzed, the abstract interpretation is done
on the result of the join() operation between all its predecessors. Then, widening and
narrowing are applied using the result of the last iteration. The successors of the current
instruction are added to the queue of instructions to process, except if the last and the
new abstract states are equal. Since the analysis stops only when all abstract states
have stabilized, it means that the solvers must satisfy the descending chain condition
in addition to the ascending chain condition or they must implement narrowing.
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At the end of the analysis, the list of errors of ErrorLogPolicy is cleared and each
instruction is interpreted one last time so that errors are reported correctly. This is
important because during the main loop, some errors can be reported because of the
lack of precision that results from widening, but often, enough precision is recovered
after and “errors” disappear. The list of errors is the result that is produced by this
analysis.

An important question is whether this analysis is correct. In this case, the correct-
ness property is:

Given a function that is analyzed, for any execution of the function that
has an input state described by the extremal value of the analysis, if the
analysis does not report any error then the execution will not have any
memory access error.

Note that the function that is analyzed does not necessarily terminate. However,
the analysis should always terminate. In its current state, we are not sure that this
analysis always terminates because the implementation of widening for LinearSolver
is incomplete. Thus, we cannot claim that this analysis always terminates. Still, we
have not observed any case where it does not.

There are other issues that could affect whether the analysis terminates or not. For
most solvers, the argumentation of whether or not they satisfy the ascending chain
condition and whether not satisfying it can cause problems is informal. In particular,
it is not obvious whether PointerSolver would need widening if its precision was
improved. Concerning narrowing, we have not yet encountered any situation where
it was necessary, but LinearSolver and ModuloSolver do not satisfy the descending
chain condition and they do not implement narrowing; this could affect termination.
Also, it is not clear whether the transfer functions implemented by the interpreter are
monotone, because they use policies that have states which can change over the course
of the analysis.

If we assume that the analysis terminates, there is the more important question of
whether its result can be trusted; that is to say, is the function necessarily memory-safe
when the analysis does not return any error? The main problem with the analysis is
that integers are assumed to be of an arbitrary precision, which is certainly not the
case in the low-level RTL code that is analyzed. If there is an integer overflow during
execution, it is not modeled correctly by the analysis, something that could lead to a
memory access error left undetected by the analysis. Therefore, we cannot claim that
this analysis is correct and it must be improved before its result can be fully trusted.
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If the problem of integer overflow is fixed, it does not mean that the analysis will
be automatically correct. There is currently no formal definition of the semantic of
RTL available and our description of the different solvers is also highly informal. Thus,
much work is needed on formalization before the correctness of this analysis can be
established. The fact that, in addition to the interpreter, some solvers also modify the
abstract state could complicate their formalization.

There is another aspect of this analysis that does not affect its correctness, but could
affect its precision. It is the order in which the instructions are analyzed. When there
is widening, an instruction should not be analyzed again before all the instructions
that can affect it have been analyzed and their result have been propagated to it. The
goal is to avoid widening more than necessary. The current queue of instructions to
analyze does not try to ensure that. The fact that it does not even guarantee that
the instructions are analyzed in the same order every time the analysis is run could
theoretically lead to some cases where a function is determined to be safe only one time
out of two. This would still mean that the function is safe.

6.2 Results

This section presents some examples of code that can or cannot be determined safe by
this analysis. It also shows some examples of code that is correctly identified as unsafe.
In all cases, we present C source code, but this code was transformed into RTL by GCC
before it could be analyzed.

6.2.1 What Works

First, we present in Table 6.2 a simple function that has an obvious memory access
error, which is correctly identified.

This function tries to change the eleventh element of an array that has only 10.
This is wrong, and the analysis catches it. To get this result, we only had to indicate
in datadb.py that the symbol array corresponds to a zone of 40 bytes (10 4-bytes
integers). The message tells that there is a memory access error in the zone named
Sym_array, i.e., the zone that corresponds to symbol array (4 is an internal ID for the
zone). The function tries to access the byte at offsets 40, 41, 42 and 43, but the valid
offsets are only between 0 and 39.
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Table 6.2: Analysis of a simple function with a memory access error.
The function analyzed:

static int array[10] = {1,2,3,4,5,6,7,8,9,10};

void simple_error()
{

array[10] = 1;
}

The diagnostic of the analysis:

Analyzing simple_error ...
Error: line 5 : Memory access error in zone Zone(4_Sym_array):
word of length 4 at offset 40 may be outside the bounds [0,40]

The next function, in Table 6.3, is also pretty simple and this time it has no memory
access error.

This function uses one local variable, thus we had to specify in datadb.py that it
uses 4 bytes of local memory in addition to the zone of the array. This function is
interesting because it requires a minimum of precision from the analysis to be analyzed
correctly. We observe that there is an instruction that is a memory access error, but it
is never executed because the condition in the if is always false. However, to detect
that, the analysis must do many things. If it lacked any of the following items, it could
not tell that the function is safe.

• It must detect that the first use of the pointer p is an alias to array[0].

• It must detect that the second use of the pointer p is not an alias to array[0].

• It must use the condition in the if to create the correct constraint for the true
branch.

• It must detect that the condition can never be satisfied.

• It must know that an instruction on a path that is impossible cannot generate a
memory access error.

The next function, in Table 6.4, is a little more complicated. To correctly analyze
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Table 6.3: Analysis of a safe function with aliases and dead code.
The function analyzed:

static int array[10] = {1,2,3,4,5,6,7,8,9,10};

void write_global()
{

int *p;
array[0] = 1;
array[1] = 2;
p = &array[0];
*p = 42;
p++;
*p = 3;
if (array[0] < 42)

array[10] = 1; // Error
}

The diagnostic of the analysis:

Analyzing write_global ...
this function is safe for the specified preconditions
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Table 6.4: Analysis of a function with a loop and a nontrivial precondition.
The function analyzed:

// The first element is the size
int array_sum(int *a)
{

int res = 0;
int i;
for (i = 1; i<*a; i++)

res += a[i];
return res;

}

The diagnostic of the analysis:

Analyzing array_sum ...
this function is safe for the specified preconditions

this function, we must specify in datadb.py that it uses 4 bytes of arguments and 8
bytes of local variables, but this is not sufficient. We must also indicate that the first
(and only) parameter is a pointer to a zone that we will call z1, that this zone must have
at least one 4-byte word at offset 0, and that the first element of the array indicates its
length, including the first element. With za representing the zone of arguments and z1
representing the zone pointed to by the first argument, the list of constraints is:

• Equal(ZoneSlice(za, Integer(0), 4), AbstractAddress(z1, Integer(0)));

• LessThanEqual(StartOffset(z1), Integer(0));

• GreaterThanEqual(EndOffset(z1), Integer(4));

• GreaterThanEqual(EndOffset(z1),
Times(ZoneSlice(z1, Integer(0), 4), Integer(4))).

These constraints are converted into abstract variable expressions and they are
added to the extremal value of the analysis using addConstr().

This function is also interesting to analyze. There must be widening because we have
no integer upper bound for i. However the widening must not discard the precondition
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Table 6.5: Analysis of a function with a circular linked list.
The function analyzed:

struct IntList
{

int i;
struct IntList *next;

};

int circular_sum(struct IntList *l)
{

struct IntList *first=l;
int res = first->i;
for (l=first->next; l!=first; l=l->next)

res += l->i;
return res;

}

The diagnostic of the analysis:

Analyzing circular_sum ...
this function is safe for the specified preconditions

because the analysis needs it together with the condition of the loop to verify that
the function is safe. Note that the analysis of this function must be done completely
symbolically because of the lack of integer bounds for the size of the array.

The next function, in Table 6.5, uses a circular linked list. Just like for array_sum(),
we must specify in datadb.py that this function uses 4 bytes of arguments and 8 bytes of
local variables, but also some constraints to describe the pointer received as parameter
and the recursive structure it points to. With za representing the zone of arguments
and zc representing the circular structure, the list of constraints is:

• Equal(ZoneSlice(za, Integer(0), 4), AbstractAddress(zc, Integer(0)));

• LessThanEqual(StartOffset(zc), Integer(0));

• GreaterThanEqual(EndOffset(zc), Integer(8));

• Equal(ZoneSlice(zc, Integer(4), 4), AbstractAddress(zc, Integer(0))).
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Table 6.6: Analysis of a function with a linked list.
The function analyzed:

struct IntList
{

int i;
struct IntList *next;

};

int list_sum(struct IntList *l)
{

int res = 0;
for (; l; l = l->next)

res += l->i;
return res;

}

The diagnostic of the analysis:

Analyzing list_sum ...
Warning: line 11 : Memory access error in zone Zone(1_Unknown):
word of length 4 at offset 0 may be outside the bounds [Unknown,Unknown]
Warning: line 10 : Memory access error in zone Zone(1_Unknown):i
word of length 4 at offset 0 may be outside the bounds [Unknown,Unknown]

With these constraints, the analysis is able to determine that this function is safe.
Note that we do not have any constraint on NumInstances(zc), thus the analysis
cannot assume that two pointers to zc are equal. Each element of the list is another
instance of zc, even if they are all represented by the same zone.

6.2.2 What Does Not Work

Table 6.6 shows a function that cannot be determined safe by the current analysis. It
looks much like circular_sum, but here the list ends with a NULL pointer instead of
being circular.

This function cannot be analyzed correctly because currently, we have no way to
express the fact that next can be either a pointer to an instance of the structure or
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Table 6.7: Analysis of a function with null-terminated strings.
The function analyzed:

char *strcpy(char *dest, const char *src)
{

char *d = dest;
while (*src != ’\0’) {

*d= *src;
d++;
src++;

}
*d = ’\0’;
return dest;

}

The diagnostic of the analysis:

Analyzing strcpy ...
Warning: line 5 : Memory access error in zone Zone(1_Unknown):
word of length 1 at offset 0 may be outside the bounds [Unknown,Unknown]
Warning: line 4 : Memory access error in zone Zone(1_Unknown):
word of length 1 at offset 0 may be outside the bounds [Unknown,Unknown]
Warning: line 9 : Memory access error in zone Zone(1_Unknown):
word of length 1 at offset 0 may be outside the bounds [Unknown,Unknown]
Warning: line 5 : Memory access error in zone Zone(1_Unknown):
word of length 1 at offset 0 may be outside the bounds [Unknown,Unknown]

NULL. This is why the analysis reports an error with an access to an unknown zone with
unknown bounds. In the message, the offset 0 is arbitrary.

Another function that cannot be determined safe by the current analysis is shown
in Table 6.7. This one manipulates null-terminated strings. This function cannot be
analyzed correctly because currently, we have no way to express the fact that the offset
of the first null character represents the length of the string or that of the zone. Thus,
the analysis reports an error for each use of a pointer, that is, four times.

Table 6.8 shows yet another function that cannot be determined safe by the current
analysis. This time, it is because function calls are not supported. This is reported
by the analysis because we cannot consider that a function is memory-safe if any of its
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Table 6.8: Analysis of a function with a function call.
The function analyzed:

void call(void)
{

char buf[10];
strcpy(buf, "hello");

}

The diagnostic of the analysis:

Analyzing call ...
Warning: line 49 : Function call to strcpy not supported

calls is unsafe.

6.2.3 Performance

For the simple functions that we tested, the time required to perform the analysis varied
greatly. It took anywhere from 0.01 second to 0.90 seconds on a 2 GHz AMD Sempron
CPU. The factors that affect the most the duration of the analysis seem to be:

• The length of the function to analyze;

• The number of variables used by the function;

• The complexity of the extremal value (which describes the input of the function);

• The presence of loops;

• The use and manipulation of pointers;

• The existence of many variables that are linearly related.

It is easy to understand why most of these factors affect the length of the analysis.
When there is a loop, the analysis must often analyze the instructions it contains many
times before the abstract state stabilizes. The use of pointers can slow down the analysis
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because of the way new constraints are handled in PointerSolver. For linearly related
variables, the methods join() and widen() of LinearSolver can also be slow.

The RTL-Check framework and the memory access analysis were completely imple-
mented in Python. Python is an interpreted language that is usually considered slow.
Therefore, to speed up the analysis, it would be possible to optimize the parts that are
known to take much time, but it would also be possible to rewrite it in a language that
has a better run-time performance. It is important to keep an eye on the performance
of the analysis, because as its precision will improve, its performance will most likely
decrease.

In the current version, the main optimization is that the interpreter removes the
dead registers from the abstract state by calling setValue() with unknown values.
One function in particular takes 106 seconds, instead of 0.9, when analyzed without
this optimization. It has 13 lines including two if statements and one for statement.
It uses two parameters, two local variables and an array of 10 variables.

6.3 Possible Improvements

There are many areas in which the analysis could be improved. Concerning correctness,
something must be done to detect integer overflows that could affect memory safety. For
ensuring termination, the implementation of widening for LinearSolver and that of
narrowing for LinearSolver and ModuloSolver must be completed. From a theoretical
point of view, much work is needed to formalize RTL and the different parts of this
analysis, and to obtain complete proofs of termination and correctness for the analysis.
This was discussed in Section 6.1.12.

There are also some parts of the analysis that are not completely implemented;
there are many assertions that force abortion when some case that is not yet handled
is encountered. For example, not all RTL expressions are known by the interpreter
currently. Improving the analysis to handle these cases would make it possible to
analyze more programs.

Concerning precision, many things can be improved. For example, the join()
method of LinearSolver and PointerSolver could return a more precise result in
some situations. It would be very interesting to support function calls, because, in
practice, no useful program can be written without any function call. Also, existing
solvers should be improved or new solvers should be created to make it possible to verify
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that functions dealing with more complex structures are safe. This was discussed in
Section 6.2.2.

Finally, concerning performance, Section 6.2.3 hints at some functions that could
be optimized. There are probably some other areas of the analysis that would benefit
from optimization.



Chapter 7

Metaprogramming and the Visitor
Design Pattern in RTL-Check

In this chapter, we discuss how metaprogramming is used in RTL-Check and the benefits
it brings. Moreover, we describe how metaprogramming can automate the implemen-
tation of an improved visitor design pattern.

7.1 About Metaprogramming

Metaprogramming is [Wik]:

the writing of programs that write or manipulate other programs (or them-
selves) as their data or that do part of the work that is otherwise done at
runtime during compile time.

There are many kinds of metaprogramming. A compiler is a metaprogramming tool
because it translates a source program into a binary one. Thus, by nature, writing a
compiler is metaprogramming. Creating a tool that does static analysis of programs is
also metaprogramming by nature, however this chapter is not about metaprogramming
at such a high level.

Some approaches to metaprogramming at a lower level include reflection, templates
in C++, higher level functions in functional languages and macros in LISP and its
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derivatives. Python is a great language for metaprogramming. It offers a good reflec-
tion model, higher level functions and metaclasses, a lesser known feature that allows
creating classes at run time. Python is also a very dynamic language in that it makes
it possible to modify classes at run time, even after instances have been created.

RTL-Check uses metaprogramming to generate and modify some classes and to
automate the implementation of an improved visitor design pattern. In each case,
metaprogramming could be replaced by equivalent “non-meta” code. The following
sections explain how metaprogramming is used in RTL-Check and the advantages of
using it.

7.2 Using Metaprogramming to Generate Classes

The following sections explain the different techniques used in RTL-Check to generate
classes dynamically and why this is useful.

7.2.1 The Rtx Class Hierarchy

The Rtx class hierarchy is an object oriented model to represent RTL, the low-level
intermediate language used by GCC. The C structure of GCC to represent RTL is
essentially an integer indicating the RTL code followed by a list of operands. Each
RTL code has a fixed number of operands, each with a predefined type. The supported
types for operands are:

• Integer;

• String;

• Pointer to another RTL expression;

• Vector of pointers to RTL expressions.

Each class in the Rtx hierarchy represents one or more RTL codes that are con-
ceptually related and which have some field in common. Instead of using a position
number to access the operands of an RTL expression (as with the C structure) the
classes expose them via field names.



Chapter 7. Metaprogramming and the Visitor Design Pattern in RTL-Check 87

Table 7.1: Example of a class in the Rtx class hierarchy (RtxGenBinArith).

class RtxGenBinArith(RtxGenArith):
@property
def op1(self):

return self.xexp(0, ’e’) # Operand 0 (an RTL expression)
@property
def op2(self):

return self.xexp(1, ’e’) # Operand 1 (an RTL expression)

Table 7.2: Declaration of classes in the Rtx hierarchy using a function.

_createRtxSubclass(’GenBinArith’, RtxGenArith,
(rtldef.PLUS, rtldef.MINUS, rtldef.MULT),
((’op1’, 0, ’e’, ’xexp’),
(’op2’, 1, ’e’, ’xexp’)))

_createRtxSubclass(’Plus’, RtxGenBinArith, rtldef.PLUS)

The hierarchy has multiple levels to make it possible to deal with only one specific
RTL code as well as many related ones, depending on the situation. For example, the
class RtxGenBinArith represents all the RTL codes that are binary arithmetic opera-
tions. This class exposes two fields, op1 and op2, both of which are RTL expressions.
The class RtxPlus inherits from RtxGenBinArith and represents only one RTL code,
the addition. It does not add any new field. At the top-level of the hierarchy there is
the Rtx class that represents all RTL codes. Table 7.1 shows what an Rtx class should
look like.

All classes in the hierarchy are based on the same pattern, and there are many RTL
codes that need there own class. Thus, they are good candidates for metaprogramming.
Instead of creating them one by one, it is possible to write a function that creates them.
This function knows the main structure of the classes it creates, and it fills the blanks
with the parameters it receives. With this function available, creating a new Rtx-derived
class is possible without repeating the common code, as shown in Table 7.2.

The function _createRtxSubclass() takes 4 parameters. The first one is the name
of the class that must be created, without the ’Rtx’ prefix, and the second one is its
base class (it can be Rtx). The third parameter is the list of RTL codes represented by
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the new subclass (more on that later). The fourth parameter describes the list of fields
of the new subclass. For each of them, there is a tuple which consists of the name of
the field, its position, its type from the format string of the C structure, and its type
in RTL-Check.

Using this function to declare classes has many advantages over the traditional way
of doing so. It does not only reduce the amount of code, it also improves its legibility
because there is less noise surrounding the description of each class. This becomes much
more obvious when looking at a long list of class declarations. Another advantage is
that it makes it unlikely to have a subtle bug in one of the classes because the pattern
was not followed correctly. It also makes it trivial to change the pattern for all classes
at the same time.

In addition, the function can do more than just create a new class. In this case, it
also associates the class to each RTL code listed in the third parameter. This association
is important when an instance of an Rtx class must be created from a raw dump file.
Given an RTL code, we must be able to create an instance of the Rtx class that will
be the most meaningful to represent the expression. Thus, this function is more than
a simple macro, as can be seen in Table 7.3.

The most important part of the _createRtxSubclass() function is the call to type.
In fact, type is not a function. In Python terminology it is a metaclass, i.e., a class which
has other classes as its instances. Thus, the call to type is technically an instantiation,
but for all practical purposes, it can be considered a function call. It returns a new
class containing methods that are specified in a dictionary. The name of a method is
a key in this dictionary, and its implementation, given as a lambda expression, is the
corresponding value.

After a class is created, it is given a name in the global namespace of the current
module. The last step is associating the class to the RTL code it represents.

7.2.2 Metaclass for Analyses

In Python, it is possible to change how classes are created with custom metaclasses
instead of the default type metaclass. This feature has proven very useful in RTL-
Check, in particular for classes that implement analyses, i.e., those that inherit from
BaseAnalysis. This section describes AnalysisMeta, the metaclass of BaseAnalysis
and all the classes that inherit from it. This metaclass implements the core of the
RTL-Check framework.
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Table 7.3: Function that creates Rtx subclasses.

# This function creates a subclass of Rtx
def _createRtxSubclass(suffix, base, crange, methods=()):

name = ’Rtx’ + suffix

# Create the members dictionary for the class
memberDict = {}
for (xname, element, format, xtractor) in methods:

xget = {’xint’: lambda self, el=element, fmt=format:
self.xint(el, fmt),

’xstr’: lambda self, el=element, fmt=format:
self.xstr(el, fmt),

’xexp’: lambda self, el=element, fmt=format:
self.xexp(el, fmt),

’xvec’: lambda self, el=element, fmt=format:
self.xvec(el, fmt),

}[xtractor]
memberDict[xname] = property(xget)

# Create a subclass of Rtx
subclass = type(name, (base,), memberDict)

# Add it to this module
globals()[name] = subclass

# Set the new constructor for all RTL codes in crange
if isinstance(crange, int):

_rtxConstructor[crange] = subclass
elif isinstance(crange, tuple):

for code in crange:
_rtxConstructor[code] = subclass

else:
raise TypeError("_createRtxSubclass: crange has wrong type")
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Table 7.4: Constructor of AnalysisMeta (beginning).

class AnalysisMeta(type):
def __init__(cls, name, bases, dict):

type.__init__(cls, name, bases, dict)

. . .

The only time at which the metaclass gets involved is when a class that inherits
BaseAnalysis is declared (created). At this time, the constructor (__init__()) of
the metaclass is invoked. Remember that a class is an instance of its metaclass. The
constructor receives as parameter the object that will represent the new class, its name,
the list of its base classes and a dictionary containing its attributes (mostly methods).
The argument that the constructor receives usually comes from the class declaration,
i.e., the class instruction.

The first thing the metaclass does is delegating a large part of the work required for
the creation of the new class to type, its base class. This is shown in Table 7.4.

The next step in the creation of the new analysis is sorting the dependencies be-
tween analyses. In Section 5.1.5 we explained how analyses, policies, interpreters
and solvers can declare that they depend on other analyses with their static mem-
ber _requiredAnalysis. Table 7.5 shows how the metaclass sorts the dependencies
between everything.

It produces a tuple (which can be seen as a list) of 2-tuples, each containing an
analysis class and its name (modified so that the first letter is lower case). The analyses
are sorted so that they appear after their dependencies. In _iterAllAnalyses, the class
LIFOQueue implements a LIFO queue (last in, first out) which is special in that it keeps
only one copy (the last one) of elements that are added many times to it. Thus, after
the call to _sortRec, the queue contains all the analyses in the dependency tree, and
an analysis without dependency will be popped first.

A similar process is used to sort the dependencies between policies, solvers and
interpreters. However, in these cases, the boundary of analyses is not crossed because
these modules are local to the analysis that needs them. Another not so different process
is used to collect the list of interfaces that the abstract state class must implement.
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Table 7.5: Constructor of AnalysisMeta (iteration over analyses).

# Returns an iterator over analyses, starting with those that
# have no dependency. All analyses are searched recursively
def _iterAllAnalyses(cls):

def _sortRec(cls, q):
for interp in getattr(cls, ’_requiredInterpreters’, ()):

_sortRec(interp, q)
for policy in getattr(cls, ’_requiredPolicies’, ()):

_sortRec(policy, q)
for solver in getattr(cls, ’_requiredSolvers’, ()):

_sortRec(solver, q)
for base in cls.__bases__:

_sortRec(base, q)
for analysis in getattr(cls, ’_requiredAnalysis’, ()):

q.add(analysis)
_sortRec(analysis, q)

q = LIFOQueue()
_sortRec(cls, q)
return (q.pop() for i in xrange(len(q)))

class AnalysisMeta(type):
def __init__(cls, name, bases, dict):

. . .

# Tuple of (Analysis, name)
_sortedAllAnalyses = tuple((x, x.__name__[0].lower()

+ x.__name__[1:])
for x in _iterAllAnalyses(cls))

. . .
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Table 7.6: Constructor of AnalysisMeta (creation of _Interpreters).

class AnalysisMeta(type):
def __init__(cls, name, bases, dict):

. . .

# We create an Interpreters class for cls
class _Interpreters(object):

def __init__(self, analysis):
for interp,name in _sortedInterpreters:

setattr(self, ’_’+name, interp(analysis))
def interpret(self, insn):

for interp,name in _sortedInterpreters:
getattr(self, ’_’+name).interpret(insn)

# Add a property get for each interpreter
for _,name in _sortedInterpreters:

setattr(_Interpreters, name,
property(lambda self, name=name:

getattr(self, ’_’+name)))
setattr(cls, ’_Interpreters’, _Interpreters)

. . .

Once all information about the dependencies is collected, the metaclass starts adding
new attributes to the new class. Many of them are needed by BaseAnalysis, which
cannot provide an implementation for them because they are specific to a given analysis.
For example, an attribute named _Interpreters is added to the new class. It is a class
that represents all the interpreters required by the analysis. Its constructor creates
an instance of each interpreter required by the analysis. It also provides a method
named interpret() which calls that of each interpreter. Moreover, it provides one
get-property to access each interpreter. BaseAnalysis cannot implement such a class.
Table 7.6 shows how the metaclass implements all this.

The metaclass uses similar code to add a class that represents the abstract state
(_State, composed of solvers) and another representing policies (_Policies). It also
adds get-properties that make it possible to access the different policies and interpreters
directly from the analysis, and a method named _initAllAnalyses() that is called by
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the constructor of BaseAnalysis for top-level analyses.

If metaclasses were not available, it would still be possible to implement most of
the RTL-Check framework in the constructor of BaseAnalysis because Python makes
it possible to add attributes to classes and instances, even after an instance is created.
However, there would be the following drawbacks.

• The constructor runs once for each instance of analysis class that is created instead
of once for each kind of analysis. This could become a performance problem if it
was not handled properly.

• Mixing normal code of the constructor with code that modifies the class of which
an instance is being created can be confusing. It would make the class more
difficult to understand, and the framework would be less maintainable.

If we used a language that does not provide a replacement for Python’s metaclasses
and which is not as dynamic as Python, we would have to resort to different approaches
to implement the framework. For example, we could use a method that takes the name
of the interpreter that the caller wants as a parameter instead of providing a get-
property named after the interpreter that returns it directly. If everything else failed,
we would have to implement a framework doing less work, and thus delegating more
work to the programmer that uses it to implement a new analysis.

7.3 Automatic Implementation of the Visitor
Design Pattern

Another interesting use of metaprogramming in RTL-Check is for implementing the
visitor design pattern automatically. RTL-Check uses this pattern extensively for its
Rtx class hierarchy, its abstract variables and abstract variable constraints. For exam-
ple, the core of an interpreter is often implemented as a visitor, which can itself use
other visitors to complete its work. The different solvers also use visitors to imple-
ment the transformation rules that were described in Section 6.1 for linear derivations,
congruences and pointers.
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7.3.1 Description of the Visitor Design Pattern

The visitor design pattern [GHJV94] is useful when there are many operations that
must be performed on a complex data structure. Let us use the Rtx class hierarchy
as an example. Currently it contains more than 40 classes that represent as many
different kinds of RTL expressions. This is in addition to the classes allowing them to
be grouped logically, which we will ignore for now. RTL expressions are composed and
linked together to form a structure that represents a program.

Suppose that we must implement two operations on it: print and interpret. Each
kind of RTL expression will have to be printed or interpreted differently, so it is not
possible to rely only on methods in the Rtx base class to do anything useful. One
obvious solution is to write two methods (print() and interpret()) in each class of
the Rtx hierarchy. This approach has a few problems. The main ones are that the
code implementing a single operation is scattered among many classes, which makes it
more difficult to understand when looking at the code. Also, if the operation needs to
maintain some state, there is no central place for it; it must be passed as parameter
between methods. Moreover, if a new operation had to be written, it would require
modifications to all of the 40 classes that represent RTL expressions.

The visitor design pattern solves all of these problems. Figure 7.1 shows the UML
model for this pattern applied to Rtx classes. The idea is that each operation is imple-
mented in one class, called a visitor. This class implements an interface (IRtxVisitor)
containing one method (visit()) overloaded for each class it must work with, i.e.,
those that implement IRtxElement. This interface contains a method accept() that
calls the right method visit() on the visitor passed as parameter. It makes it possible
to invoke an operation on any element without knowing the exact type of element we
are dealing with. Ultimately, the method invoked depends on both the kind of element
and the kind of visitor.

7.3.2 Automatic Implementation

The visitor design pattern is good, but it is not perfect. One of its main disadvantages
is that it requires much code just to forward calls from accept() to visit(). Table 7.7
shows the C++ code that implements accept(). This is always the same code, but it
cannot be shared in a base class because for each class we want the compiler to generate
a call to a different visit() method, the one with a parameter that matches the real
type of this.
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<<Interface>>

IRtxVisitor

+visit(element:RtxInsn)

+visit(element:RtxSet)

+visit(element:RtxPlus)

+visit(element:RtxMinus)

+visit(element:Rtx...)

<<Interface>>

IRtxElement

+accept(visitor:IRtxVisitor)

RtxPlus

+accept(visitor:IRtxVisitor)

+otherMethodsOnRtxPlus(...)

RtxInsn

+accept(visitor:IRtxVisitor)

+otherMethodsOnRtxInsn(...)

RtxSet

+accept(visitor:IRtxVisitor)

+otherMethodsOnRtxSet(...)

RtxMinus

+accept(visitor:IRtxVisitor)

+otherMethodsOnRtxMinus(...)

RtxPrinter

-stateOfPrinter

+visit(element:RtxInsn)

+visit(element:RtxSet)

+visit(element:RtxPlus)

+visit(element:RtxMinus)

+visit(element:Rtx...)

RtxInterpreter

+stateOfInterpreter

+visit(element:RtxInsn)

+visit(element:RtxSet)

+visit(element:RtxPlus)

+visit(element:RtxMinus)

+visit(element:Rtx...)

IRtxVisitor

IRtxElement

IRtxElement

IRtxElement

IRtxElement

<<uses>>

<<uses>>

<<uses>>

<<uses>>

Figure 7.1: The classic visitor design pattern applied to Rtx classes.

Table 7.7: Implementation of accept() in C++.

void accept(IRtxVisitor visitor)
{

visitor.visit(this)
}
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Table 7.8: Automatic implementation of the visitor design pattern.

# This function implements the visitor design pattern
# for a given list of classes
def _createVisitor(classes, visitorName):

visitorMethods = {}
for cls in classes:

# Add an accept method to the existing class
visitName = ’visit’ + cls.__name__
def accept(self, visitor, visitName = visitName):

visitMethod = getattr(visitor, visitName)
visitMethod(self)

setattr(cls, ’accept’, accept)

# Create a visit method for the interface
def visit(self, obj, visitName = visitName):

raise RuntimeError(visitName + " not implemented in "
+ str(type(self).__name__))

visitorMethods[visitName] = visit

# Create and return the interface
return type(visitorName, (object,), visitorMethods)

Metaprogramming is useful to save the programmer from writing this boring code.
It is also faster and less error-prone. For example, many frameworks use source code
generation to automate the creation of accept() methods in C++.

In Python, it is not possible to overload methods, so the pattern must be adapted
slightly. Each visit() method is suffixed with the type of parameter it receives. For
example, the method that visits classes of type RtxPlus is named visitRtxPlus().
Figure 7.2 shows the new UML model.

Since Python is a dynamic language, we can generate much of the code needed for
the pattern at run time. Table 7.8 shows one possible implementation.

With this implementation, all the classes that must be visited (e.g. RtxInsn, RtxPlus,
etc.) can be created without thinking about the visitor design pattern. The function
_createVisitor(), receives a list of elements (classes) that must be made visitable.
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IRtxVisitor

+visitRtxInsn(element)

+visitRtxSet(element)

+visitRtxPlus(element)

+visitRtxMinus(element)

+visit...(element)

IRtxElement

+accept(visitor:IRtxVisitor)

RtxPlus

+accept(visitor:IRtxVisitor)

+otherMethodsOnRtxPlus(...)

RtxSet

+accept(visitor:IRtxVisitor)

+otherMethodsOnRtxSet(...)

RtxInsn

+accept(visitor:IRtxVisitor)

+otherMethodsOnRtxInsn(...)

RtxMinus

+accept(visitor:IRtxVisitor)

+otherMethodsOnRtxMinus(...)

RtxPrinter

-stateOfPrinter

+visitRtxInsn(element)

+visitRtxSet(element)

+visitRtxPlus(element)

+visitRtxMinus(element)

+visit...(element)

RtxInterpreter

+stateOfInterpreter

+visitRtxInsn(element)

+visitRtxSet(element)

+visitRtxPlus(element)

+visitRtxMinus(element)

+visit...(element)

Figure 7.2: The visitor design pattern applied to Rtx classes in Python.
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For each of them, it adds an accept() method on the element and a visit() method
on the class that represents the interface of the visitor. This method should never be
called because a visitor should handle all cases, but if it is, it aborts with a message
that indicates which method is not implemented.

RTL-Check does not use this implementation. Instead, an improved version, de-
scribed in Section 7.4.2, is used.

7.4 Improved Visitor Design Pattern

Automatic code generation alone does not solve all the weaknesses associated with the
visitor design pattern. One of them is that if the visit() method for many classes is
the same, it must still be repeated in the visitor for each of them.

Another weakness is that if a new visitable class is added, every visitor must be
modified. It is possible to provide an accept() method automatically for the new
class, but it is not possible to automatically add support for this class to every existing
visitor.

Yet another weakness is that visit() methods cannot return information directly.
They must use some member variable of the visitor to save information that will be
needed later. For example, it is possible to use something like self.returned_value
instead of returning a value directly, but it is not the best solution when this value has
a meaning only for the caller of visit(), not for the visitor as a whole.

7.4.1 Returning Information Directly

Allowing visit() methods to return a value is easy and it is something we see often
in an implementation of this pattern. We just have to ensure that accept() returns
whatever visit() returns. In Python this does not cause any problem because the
language is dynamically typed and the interpreter will always be happy to return any
value.

The visit() method is always free to not return anything if it does not need to.
Obviously, when it does return a value, the caller must have some way to know what
the value means and how it can be used. Usually, all the methods of a given visitor
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return a value of the same type.

Table 7.9 shows a part of the class AbstractAddressEvaluator, which implements
the rules presented in 6.1.5. The goal of this visitor is to transform an arbitrary abstract
variable expression into another one that is an AbstractAddress. Thus, it is natural
to write every visit() method such that it returns an abstract variable expression.
When the transformation fails, it returns None.

In a language such as Java or C#, where every type inherits from something like
Object, it is possible to define every accept() and visit() method to return a value
of this type. This has the disadvantage of requiring an explicit cast before using the
returned value, but it is better than no return value at all. With these languages, it
would be difficult to declare a more specific return type because accept() must be
independent of the visitors and the signature of two methods having the same name
cannot differ only by their return value. In some cases, when using code generation for a
visitor returning a value of a known type, it would be possible to generate an additional
accept() method that takes as parameter this specific visitor and that returns an
object of this specific type. It would require some changes to the elements that can be
visited every time there is a new visitor, but since this code is generated automatically,
it is a lesser problem.

In a language such as C++, there is no type that is common to all values, so we
could not have a single accept() method that works for any kind of return value.
However, we could design all visitors so that they return a class that inherits from a
common base class. We could also use code generation as discussed above for Java or
C#. But C++ has a strong template mechanism that could be used to instruct the
compiler to automatically generate the correctly typed accept() method at compile
time in some cases.

7.4.2 Handling Class Hierarchies

In this section, we describe a small modification to the visitor design pattern that
substantially improves it when the elements visited form a multi-level class hierarchy.
Essentially, it allows us to benefit from method inheritance (i.e., automatically using the
method of (or for) the base class when it is not implemented for a specific class) when
implementing an operation using a visitor. This possibility was lost when we switched
from implementing an operation inside a class to the classic visitor design pattern.

The main change is in the accept() method of each kind of element. It tries to call
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Table 7.9: Example of a visitor that returns a value directly.

class AbstractAddressEvaluator(ValueVisitor):
def visitInteger(self, value):

return value

def visitAbstractAddress(self, aa):
return aa

def visitAbstractVariable(self, av):
# If possible, we prefer returning an AbstractAddress
ptr = self._analysis.currentState.pointer.getAddress(av)
if isinstance(ptr, AbstractAddress):

return ptr
# Otherwise, maybe an integer
integer = self._analysis.currentState.linear.getValueConst(av)
if isinstance(integer, Integer):

return integer
# Otherwise the variable itself
return av

def visitPlus(self, value):
val1 = value.val1.accept(self)
val2 = value.val2.accept(self)
if val1 is None or val2 is None:

return None
if isinstance(val1, AbstractAddress):

return AbstractAddress(val1.zone, Plus(val1.offset, val2))
if isinstance(val2, AbstractAddress):

return AbstractAddress(val2.zone, Plus(val2.offset, val1))
return Plus(val1, val2)

def visitTimes(self, value):
val1 = value.val1.accept(self)
val2 = value.val2.accept(self)
return Times(val1, val2)



Chapter 7. Metaprogramming and the Visitor Design Pattern in RTL-Check 101

Table 7.10: Automatic implementation of the improved visitor design pattern.

# This function prepares a class hierarchy for the improved
# visitor design pattern (for class hierarchies)
def _makeVisitable(classes, visitorName, visitableBase):

for clsName in classes:
visitName = ’visit’ + clsName
def accept(self, visitor, clsName=clsName, visitName=visitName):

try:
visitMethod = getattr(visitor, visitName)

except AttributeError:
return super(globals()[clsName], self).accept(visitor)

return visitMethod(self)
setattr(globals()[clsName], ’accept’, accept)

def visitBase(self, obj):
raise RuntimeError("visit" + visitableBase

+ " not implemented in " + str(type(self))
+ " for " + str(type(obj)))

globals()[visitorName] = type(visitorName, (object,),
{’visit’+visitableBase: visitBase})

visit() for its own type, as usual, but if it is not implemented, it calls the accept()
method of the base class, which implements the same algorithm. This implies that
there is no more an interface that must be implemented completely by a visitor.

In RTL-Check, we use metaprogramming to generate accept() methods automati-
cally. Table 7.10 shows how this is done. Notice that compared to the implementation
of Table 7.8, this one creates only one visit() method in the base visitor class. It
also puts this class directly in the global namespace (instead of returning it). We
use this implementation for abstract variables and abstract variable constraints, which
are both multi-level class hierarchies. For the Rtx class hierarchy, it is a modified
_createRtxSubclass() (see Table 7.3) that does the work.

This improved visitor design pattern brings many advantages over classic visitors.
Since it provides method inheritance, it is often possible to implement a visitor with
less code. For example, the LivenessInterpreter collects all uses of and modifications
to registers (gen and kill respectively). In the Rtx class hierarchy, RtxGenBinArith is
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Table 7.11: Visitor that uses method inheritance (LivenessInterpreter).

class LivenessInterpreter(VisitorInterpreter):
def visitRtxSet(self, rtx):

if isinstance(rtx.dst, RtxReg):
self.kill.add(Register(rtx.dst.num))
rtx.src.accept(self)

elif isinstance(rtx.dst, RtxMem):
rtx.src.accept(self)
rtx.dst.accept(self)

def visitRtxGenBinArith(self, rtx):
rtx.op1.accept(self)
rtx.op2.accept(self)

def visitRtxMem(self, rtx):
rtx.addr.accept(self)

def visitRtxReg(self, reg):
self.gen.add(Register(reg.num))

the base class of all binary arithmetic operations (RtxPlus, RtxMinus, RtxMult, etc.).
Table 7.11 shows a part the LivenessInterpreter. Notice that this visitor does exactly
the same thing for each kind of binary operator.

Another more subtle advantage of the improved visitor is that sometimes, it allows
us to add new elements that can be visited without having to change all the visitors.
For example, the current Rtx class hierarchy does not yet include the Rotate binary
operator. When we will add it, the LivenessInterpreter will not have to be modified.

Every visitor has a default visit() method that aborts with a significant error
message when no other method can handle a certain type visited at run time. This
is very useful to implement a visitor progressively on something like the Rtx class
hierarchy, where there are over 150 different RTL codes but most programs use less
than 50.
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7.4.3 Our Implementation of the Visitor Design Pattern
Compared to Others

There have been many proposals to automate the implementation of the visitor design
pattern and to improve it. This section covers the different approaches that try to solve
the problems of the classic visitor pattern affecting RTL-Check. We discuss the main
differences between them and our class hierarchy variation on the visitor design pattern.

The variation that most resembles ours is the default visitor presented in [NI96].
This paper does not discuss automatic implementation of the pattern, but it explains
how to handle class hierarchies. The idea is that every visitor on some class hierarchy
inherits from a default visitor. This visitor has one visit() method for each kind of
class that can be visited and each of their base classes. These methods just call the
visit() method for their base class. In our approach, it is the accept() method that
makes sure the call goes through the class hierarchy. The result is the same in both
cases, i.e., it allows using method inheritance when implementing a visitor.

The paper about the default visitor indicates that it requires more work to imple-
ment than the classic visitor. This is because this variation requires one more class that
contains all the default methods. This comment does not apply to our approach, since
we use automatic code generation to implement the pattern.

More variations on the visitor design pattern are presented in [GH98], which de-
scribes SableCC, a framework for developing compilers. The first variation tries to
make it easier to add new classes that can be visited. When a new class is created, in-
stead of adding its visit() method to the existing visitor interface, which would force
every existing visitors to implement this method, a new visitor interface is created. This
way, existing visitors which do not have to work on this new class do not have to be
modified. With our approach, no modification is required if existing visitors already
implement a visit() method for an ancestor of the new class.

SableCC also uses something called analysis adapters. They are classes that imple-
ment the visitor interface and in which every visit() method calls a common method
named defaultCase(). This method is equivalent to the visit() method for the base
class of the hierarchy in our approach. Thus, visitors which inherit from an analysis
adapter do not have to implement every method of the interface.

Another very interesting concept found in SableCC is that of depth-first adapters.
They are also classes implementing the visitor interface. In these adapters, the visit()
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method for a given class calls accept() on each visitable member of this class. This
way, a complex object structure can be traversed automatically if it does not contain
cycles. Some of our visitors would benefit from a depth-first adapter. For example,
LivenessInterpreter is only interested in registers. In its current implementation,
most of the code of this visitor is for traversing the object structure.

It would not be trivial to generate depth-first adapters automatically for an arbitrary
object structure. SableCC generates these adapters automatically, but it also generates
all the classes that are visited. This ensures that it has enough information about these
classes to implement depth-first adapters automatically. However, in many cases, we
could probably implement this adapter automatically with the use of reflection. In the
case of RTL-Check, this would certainly be possible, but we did not try it.

There are a few variations of the visitor design pattern that remove the need for
accept() methods. This has the advantage of not requiring any modification to the
elements that must be visited; the visitors are completely encapsulated. The extrinsic
visitor is described in [NI96]. A new dispatch() method is added to each visitor. This
method must be implemented manually and it uses run-time type information to decide
the right visit() method to call. It replaces all the accept() methods.

Another approach to eliminate accept() methods is the Walkabout class described
in [PJ98]. This class implements a default visit() method which uses run-time type
information and reflection to automatically dispatch the call to the visit() method for
the right class. Visitors that inherit from this class do not require any accept()method
to work properly. In RTL-Check, we did not try to remove these methods. They are
not an issue because we did not have to modify the source code of the classes that are
visited to accommodate the visitor design pattern; we generate them dynamically.

Another very interesting implementation of the visitor design pattern is presented
in [TC98]. It uses the metaobject protocol of OpenJava, which can be used to implement
some kind of metaclasses. The approach described supports method inheritance and
it saves the programmer from writing most of the code required for the visitor design
pattern. However, all classes and interfaces that participate in the pattern must have
some annotation, including the elements that must be visited. This is more work than
the simple call to _makeVisitable() in RTL-Check.



Chapter 8

Open Source Development

In Section 3.1 we gave our reasons for making RTL-Check open-source software. In
this chapter, we go deeper and discuss everything related to the open-source nature of
RTL-Check. Section 8.1 explains the bazaar development process and how we tried to
apply it to RTL-Check. Section 8.2 presents the results of this open source experiment
and Section 8.3 discusses possible explanations for why no bazaar emerged around our
project.

8.1 Bazaar Development

Our decision to create an open-source project was much inspired by the success of
Linux, which is analyzed in The Cathedral and the Bazaar [Ray00a]. This essay was
sparked by the shocking revelation that

a world-class operating system could coalesce as if by magic out of part-time
hacking by several thousand developers scattered all over the planet.

At the time Linux was started, everybody thought such complex software could only
be built like a cathedral, with careful a priori planning and conventionally-managed
workers. Instead,

the Linux community seemed to resemble a great babbling bazaar of differing
agendas and approaches out of which a coherent and stable system could
seemingly emerge only by a succession of miracles.
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Eric S. Raymond tried to understand how and why the Linux development process,
which he calls bazaar-style, is so effective. He tested his theory and he proposes nineteen
aphorisms about how to run an open-source project effectively. We decided to use them
as guidelines for the development of RTL-Check. Here we present the ones we think
are the most relevant to our effort.

2. Good programmers know what to write. Great ones know what to rewrite (and
reuse).

We did not try to implement anything to parse and deal with the complexity of C
and C++. Instead, we relied on GCC, a compiler that already knows about all this.
However, for the core of our analysis, we could not find something good enough as a
starting point to reach our goals, so we developed it from scratch.

3. “Plan to throw one away; you will, anyhow.” (Fred Brooks, The Mythical Man-
Month, Chapter 11)

As we briefly told at the beginning of Chapter 5, after our proof of concept our first
real attempt at implementing an analysis to find memory access errors did not give the
expected results. Its code, which was developed mostly from versions 0.0.6 to 0.0.8 of
RTL-Check, was not modular enough and it became more and more difficult to improve.
We did not hesitate to throw away much of this code, i.e., almost six months of work.

This is probably the single most important decision that we took. We did not see
our effort as a failure or lost time; it was a necessary part of a process to understand
the full extent of the problem we are dealing with. The lessons we learned from this
attempt helped us to establish the foundations of the framework that is now the core of
RTL-Check and which allowed us to implement a much better and much more modular
analysis.

7. Release early. Release often. And listen to your customers.

Our first release was still at the stage of proof of concept, so we did release early.
Whether we did release often is questionable. For the fifteen months during which
the main development of RTL-Check took place, we made thirteen releases. At the
beginning, we did four releases in less than forty days, but afterward, the typical release
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cycle was about two months. Since we were, most of the time, alone working on RTL-
Check, we felt it was more important to deliver a new version only when there were
user-visible improvements rather than half-finished code that cannot run.

Concerning the customers, if we consider they are the users, very few revealed
themselves and they did not make huge requests, so listening was not a big issue.

6. Treating your users as co-developers is your least-hassle route to rapid code im-
provement and effective debugging.

11. The next best thing to having good ideas is recognizing good ideas from your
users. Sometimes the latter is better.

19. Provided the development coordinator has a communications medium at least as
good as the Internet, and knows how to lead without coercion, many heads are
inevitably better than one.

Since one of our goals was to attract competent people in our project to achieve
better results faster, these guidelines were very important to us. The problem is that
very few of our users gave us feedback in spite of our request in each announcement and,
up to now, only one other person contributed bugfixes and new code to our project.
Still, we did not hesitate to apply these guidelines when it was possible.

8.2 Results of Our Open Source Experiment

Here we present the results of our open source experiment in relation to the goals we
introduced in Section 3.1.

8.2.1 Attracting Attention

Our first goal was showing to the world the kind of research we are doing. The
anonymity of the Internet makes it difficult to know precisely who paid attention to
our project and why, but we have statistics to show that many people did.

We used two well-known open source related sites to help the promotion of RTL-
Check. The first one is http://sourceforge.net. This is the site that officially hosts

http://sourceforge.net
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Table 8.1: Statistics about RTL-Check as of January 4th 2006.

RTL-Check home page hitsa 2388
Total number of web hitsb 11267
Total number of downloads 609
Number of releases 14
Average number of downloads per release 43.5
Freshmeat.net record hits 8096
Freshmeat.net URL hits 1982
Current number of Freshmeat.net subscribers 30
Current number of mailing list subscribers 7

aCounted as the number of requests for the SourceForge.net logo.
bIncludes all hits to the RTL-Check web site (6641) and to the SourceForge.net

project page (4626).

our project. It provides web space, download mirror sites around the world, a mailing
list and many other related services.

The second site, http://freshmeat.net, allows project administrators to register
their projects and announce new releases. Its front page always shows the projects with
most recent releases and its users can also subscribe to a given project so that they get
informed when there is a new release.

Table 8.1 shows some statistics we have about RTL-Check. They cover the period
from the start of the project in May 2004 to January 4th 2006, i.e., about 20 months. An
interesting fact is that more than 80% of the hits to the project home page came from
Freshmeat.net (URL hits). This seems to indicate that Freshmeat.net is an effective
way to promote RTL-Check.

Figure 8.1 shows the number of download for each version of RTL-Check and their
date of release. The number of downloads varies greatly from version to version and it
is difficult to explain why. It may be related to the actual text of the announcement,
e.g. the list of new features, the amount of time between releases, the period of the
year, the day of the week or the number of other releases announced on Freshmeat.net
on the day of our announcement. It is most likely a combination of many factors. It
is interesting to note that version 0.0.5 is the one with the fewest downloads; it is the
only one that was not announced on the Freshmeat.net front page.

Figure 8.2 shows a detailed view of the number of downloads during summer 2005.

http://freshmeat.net
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Figure 8.1: Number of downloads of RTL-Check per version.

From this figure, it is clear that most downloads are made during the very first few
days after the release. What we do not know is whether our user base is mostly stable
or if it is renewed from release to release. The number of subscribers on Freshmeat.net
and our mailing list seems to indicate that at least a part of our user base is stable.

Every release of RTL-Check was announced on the project mailing list, but it was
mostly one-way communications. However, we were contacted personally by three per-
sons who were all students at different universities working on projects involving static
analysis. One of them gave us some hints about GCC; he has also implemented static
analysis of RTL.

We also announced the project once on the GCC mailing list. We did that on the
day of the second release of RTL-Check. We never received direct feedback from this
announcement. The number of downloads increased for this version and the following
one, but it is difficult to tell whether it is related.

8.2.2 Attracting Co-Developer

Our second goal was attracting competent people in the project so that we can achieve
better results faster. Up to now, only one person has contributed to RTL-Check, Moritz
Muehlenhoff. He is a computer science student (Diplomstudiengang Informatik) at
University of Bremen in Germany. He chose to work on RTL-Check for his diploma
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Figure 8.2: Detailed view of downloads during summer 2005.

thesis (Diplomarbeit) because it uses an intermediate compiler representation, it is
open-source, and we were helpful when he needed information about how RTL-Check
works [Mue06].

He has already contributed code for automatically computing the size of parameters
passed to a function instead of having to specify it manually. He plans to do the same
with global variables, to add integer overflow and infinite loop detection, to create a shell
that helps debugging analyses, to port the modifications of GCC to a newer version, to
extract information from debugging symbols and more.

8.2.3 Helping Research

Our third goal was helping research on static analysis, but it is too soon to judge the
impact that RTL-Check will have in this area. What is certain is that without RTL-
Check, Moritz Muehlenhoff would have to do much more work to achieve the same
results. He would have started a new project from scratch because he did not find any
other tool that suited his needs [Mue06].
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8.3 Why No Bazaar Emerged

RTL-Check has not reached the point where it is developed in a true bazaar style; we
did not get enough feedback from our users and only one other person has contributed
to our project. We know that RTL-Check has been downloaded many times, but we do
not know by whom and what they did with it.

Maybe our expectations were too high. Eric S. Raymond [Ray00a] thinks that

it would be very hard to originate a project in bazaar mode. [...] Your
nascent developer community needs to have something runnable and testable
to play with.

When you start community-building, what you need to be able to present
is a plausible promise. [...] What [your program] must not fail to do is (a)
run, and (b) convince potential co-developers that it can be evolved into
something really neat in the foreseeable future.

RTL-Check certainly did run on its first release, but it did not do much. Maybe some
people just wait for the project to become more mature before creating a real bazaar
around it. It still lacks some important features such as interprocedural analysis, which
might convince more people of the usefulness of our project. One advantage RTL-
Check will have when it will get more users is that, because of its nature, its users are
developers, an ingredient of paramount importance for an effective bazaar.

In another related essay [Ray00b], Eric S. Raymond gives another clue that might
partly explain why few developers took part in the project.

Thus, there’s an optimum distance from one’s neighbors (the most similar
competing projects). Too close and one’s product will be a “me, too!” of
limited value, a poor gift (one would be better off contributing to an existing
project). Too far away, and nobody will be able to use, understand, or
perceive the relevance of one’s effort (again, a poor gift).

Maybe RTL-Check is “too far ahead” among open-source projects. One needs a
certain amount of theoretical knowledge to fully understand it. The proportion of
developers who know about formal methods and there applications is very low. This is
a disadvantage RTL-Check will have for a foreseeable future compared to many other
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open-source projects; there are more people who need an operating system than there
are who need to analyze source code.

One can wonder whether Python was the best language to attract developers or
whether it is too marginal. Figure 8.3 shows some selected programming languages
and the number of projects on Freshmeat.net using them. Python does not seem to be
that marginal. On the left side of Python are all the languages that are used for more
projects than Python. We did not want to use any of them because of their relatively
poor expressivity. The languages on the right may be expressive enough, but they have
a user base much smaller than that of Python.

Another aspect that might help explaining why we did not get as many developers
as expected is promotion. Announcing our project more often on other mailing lists and
web sites could increase the probability of being notified by people willing to contribute.
Doing releases more often might also be effective because, in addition to increasing the
number of announcements, it also makes the project appear more alive.

Still, we think that one day, when RTL-Check will be a more mature project, a real
bazaar might emerge around it. It could become a widely adopted platform for doing
research on static analysis and program verification.
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Conclusion and Future Work

In this thesis, we have presented the problem of memory safety in languages such as C
and C++ and we have explained its importance in our society where computers and
programs are ubiquitous. We have developed a static analysis which aims to prove that
a given program is memory-safe. This analysis is not yet complete, but it is extensible
and anyone can improve it since it is distributed in RTL-Check, which is open-source
software.

We have also created a static analysis framework that allows building analyses from
small reusable components. We have demonstrated the effectiveness of this framework
by implementing a memory access analysis using it. This framework is not limited
to the analysis described in this thesis; it is more general and it could be employed
to analyze other, possibly more complex, properties of programs. For this purpose,
existing modules from our memory safety analysis could be put to contribution.

Because of its open-source nature, we foresee many improvements to our work.
Concerning the framework itself, there could be additions to the list of known RTL
codes. Besides, it might be a good idea to support newer versions of GCC and the
analysis of GIMPLE, its new intermediate representation which would make it easier
to obtain information about program variables.

Also, it would be interesting to see how the framework could help abstracting differ-
ences between computer architectures. Up to now, it has been tested only for processors
of the Intel 80386 family. Likewise, only C programs were analyzed up to now. We are
confident that our framework is fine for other languages, but still, this must be tried
out. C++ and Java are two popular languages and many programs written in them
could certainly benefit from static analysis.
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Much theoretical work has to be performed before we know with certainty if there
remain unknown problems in the different parts of our memory safety analysis. The
semantics of RTL, that of our concrete and abstract variable expression languages, the
solvers and the invariants of the policies must first be formalized. Only then will it be
possible to show that an analysis and its interpreters are correct with respect to a given
program property.

Concerning existing solvers, many of them could be improved. For example, the lin-
ear constraint solver should have a complete implementation of widening and narrowing.
It could also be factorized in two or more solvers to make it easier to understand. The
modulo solver should have narrowing and the pointer solver should have a complete
implementation of join() and isMoreInformative(). A useful addition to this solver
would be knowledge about possibly null pointers.

Moreover, new solvers could be created to improve the precision of the current
analysis. For example, a solver could keep track of null-terminated strings. Another
one could be specialized in understanding a given complex data structure. A solver to
detect integer overflows would also be important since it is a known weakness of the
memory safety analysis.

In order to be able to analyze complete programs, it will be crucial to support func-
tion calls and render the analysis interprocedural. Other possible areas of improvement
include more parsimonious use of widening and narrowing in the memory safety anal-
ysis algorithm, optimizations to the existing modules and a shell to run analyses and
help debugging them.

In conclusion, we have created a static analysis framework that is strong enough
to support the analysis of a property as complex as memory safety in a language such
as C. Much work can be done to improve the memory safety analysis, but the open-
source framework and the existing modules distributed in RTL-Check already represent
a significant contribution to the field of static program analysis. We hope that our
work will help sparking new ideas among researchers around the world and that it will
facilitate trying them out.
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